def test_adjust_sigmoid_cutoff_zero(): """Verifying the output with expected results for sigmoid correction with cutoff equal to zero and gain of 10""" image = cp.arange(0, 255, 4, np.uint8).reshape((8, 8)) # fmt: off expected = cp.asarray([[127, 137, 147, 156, 166, 175, 183, 191], [198, 205, 211, 216, 221, 225, 229, 232], [235, 238, 240, 242, 244, 245, 247, 248], [249, 250, 250, 251, 251, 252, 252, 253], [253, 253, 253, 253, 254, 254, 254, 254], [254, 254, 254, 254, 254, 254, 254, 254], [254, 254, 254, 254, 254, 254, 254, 254], [254, 254, 254, 254, 254, 254, 254, 254]], dtype=np.uint8) # fmt: on result = exposure.adjust_sigmoid(image, 0, 10) assert_array_equal(result, expected)
def test_adjust_sigmoid_cutoff_half(): """Verifying the output with expected results for sigmoid correction with cutoff equal to half and gain of 10""" image = cp.arange(0, 255, 4, np.uint8).reshape((8, 8)) # fmt: off expected = cp.asarray( [ [1, 1, 2, 2, 3, 3, 4, 5], # noqa [5, 6, 7, 9, 10, 12, 14, 16], # noqa [19, 22, 25, 29, 34, 39, 44, 50], # noqa [57, 64, 72, 80, 89, 99, 108, 118], # noqa [128, 138, 148, 158, 167, 176, 184, 192], [199, 205, 211, 217, 221, 226, 229, 233], [236, 238, 240, 242, 244, 246, 247, 248], [249, 250, 250, 251, 251, 252, 252, 253] ], dtype=np.uint8) # fmt: on result = exposure.adjust_sigmoid(image, 0.5, 10) assert_array_equal(result, expected)
def test_adjust_inv_sigmoid_cutoff_half(): """Verifying the output with expected results for inverse sigmoid correction with cutoff equal to half and gain of 10""" image = cp.arange(0, 255, 4, np.uint8).reshape((8, 8)) # fmt: off expected = cp.asarray( [ [253, 253, 252, 252, 251, 251, 250, 249], [249, 248, 247, 245, 244, 242, 240, 238], [235, 232, 229, 225, 220, 215, 210, 204], [197, 190, 182, 174, 165, 155, 146, 136], [126, 116, 106, 96, 87, 78, 70, 62], # noqa [55, 49, 43, 37, 33, 28, 25, 21], # noqa [18, 16, 14, 12, 10, 8, 7, 6], # noqa [5, 4, 4, 3, 3, 2, 2, 1] ], dtype=np.uint8) # noqa # fmt: on result = exposure.adjust_sigmoid(image, 0.5, 10, True) assert_array_equal(result, expected)
def test_adjust_sigmoid_cutoff_one(): """Verifying the output with expected results for sigmoid correction with cutoff equal to one and gain of 5""" image = cp.arange(0, 255, 4, np.uint8).reshape((8, 8)) # fmt: off expected = cp.asarray( [ [1, 1, 1, 2, 2, 2, 2, 2], # noqa [3, 3, 3, 4, 4, 4, 5, 5], # noqa [5, 6, 6, 7, 7, 8, 9, 10], # noqa [10, 11, 12, 13, 14, 15, 16, 18], # noqa [19, 20, 22, 24, 25, 27, 29, 32], # noqa [34, 36, 39, 41, 44, 47, 50, 54], # noqa [57, 61, 64, 68, 72, 76, 80, 85], # noqa [89, 94, 99, 104, 108, 113, 118, 123] ], dtype=np.uint8) # noqa # fmt: on result = exposure.adjust_sigmoid(image, 1, 5) assert_array_equal(result, expected)
def test_adjust_sigmoid_1x1_shape(): """Check that the shape is maintained""" img = cp.ones([1, 1]) result = exposure.adjust_sigmoid(img, 1, 5) assert img.shape == result.shape