Пример #1
0
    def make_model(self, inputs, is_training):
        layer1_1 = relu(conv2d(inputs, 64, [3, 3], name='layer1_1'))
        layer1_2 = relu(conv2d(layer1_1, 64, [3, 3], name='layer1_2'))
        layer1_3 = max_pool(layer1_2, name='layer1_3')       # original image 1/2
        
        layer2_1 = relu(bn(conv2d(layer1_3, 128, [3, 3], name='layer2_1'), is_training))
        layer2_2 = relu(bn(conv2d(layer2_1, 128, [3, 3], name='layer2_2'), is_training))
        layer2_3 = max_pool(layer2_2, name='layer2_3')       # original image 1/4

        layer3_1 = relu(bn(conv2d(layer2_3, 256, [3, 3], name='layer3_1'), is_training))
        layer3_2 = relu(bn(conv2d(layer3_1, 256, [3, 3], name='layer3_2'), is_training))
        layer3_3 = max_pool(layer3_2, name='layer3_3')       # original image 1/8
        
        layer4_1 = relu(bn(conv2d(layer3_3, 512, [3, 3], name='layer4_1'), is_training))
        layer4_2 = relu(bn(conv2d(layer4_1, 512, [3, 3], name='layer4_2'), is_training))
        layer4_3 = max_pool(layer4_2, name='layer4_3')       # original image 1/16

        layer5_1 = relu(bn(conv2d(layer4_3, 512, [3, 3], name='layer5_1'), is_training))
        layer5_2 = relu(bn(conv2d(layer5_1, 512, [3, 3], name='layer5_2'), is_training))
        layer5_3 = max_pool(layer5_2, name='layer5_3')       # original image 1/32

        layer6_1 = relu(bn(conv2d(layer5_3, 2048, [7, 7], name='layer6_1'), is_training))
        layer6_2 = relu(bn(conv2d(layer6_1, 2048, [1, 1], name='layer6_2'), is_training))
        layer6_3 = relu(bn(conv2d(layer6_2, self.N_CLASS, [1, 1], name='layer6_3'), is_training))

        layer7_1 = conv2d_t(layer6_3, [None, 14, 14, 512], [4, 4], name='layer7_1')
        layer7_2 = tf.add(layer7_1, layer4_3, name='layer7_3')
        layer7_3 = conv2d_t(layer7_2, [None, 28, 28, 256], [4, 4], name='layer7_3')
        layer7_4 = tf.add(layer7_3, layer3_3, name='layer7_4')
        layer7_5 = conv2d_t(layer7_4, [None, self.RESIZE, self.RESIZE, self.N_CLASS], [16, 16], strides=[1, 8, 8, 1], name='layer7_5')
        
        annot_pred = tf.argmax(layer7_5, axis=3)
        expand_pred = tf.expand_dims(annot_pred, dim=3)

        return layer7_5, expand_pred
Пример #2
0
    def generator_AB(self, inputs, is_training, reuse=False):
        with tf.variable_scope('Generator_AB', reuse=reuse):
            with tf.variable_scope('g_ab_hidden1'):
                layer1_1 = lrelu(
                    bn(
                        conv2d(inputs,
                               64, [3, 3],
                               initializer='random',
                               name='conv_1'), is_training))

            with tf.variable_scope('g_ab_hidden2'):
                layer2_1 = max_pool(layer1_1, name='pool1')
                layer2_2 = lrelu(
                    bn(
                        conv2d(layer2_1,
                               128, [3, 3],
                               initializer='random',
                               name='conv_2'), is_training))

            with tf.variable_scope('g_ab_hidden3'):
                layer3_1 = max_pool(layer2_2, name='pool2')
                layer3_2 = lrelu(
                    bn(
                        conv2d(layer3_1,
                               256, [3, 3],
                               initializer='random',
                               name='conv_3'), is_training))

            with tf.variable_scope('g_ab_hidden4'):
                layer4_1 = conv2d_t(layer3_2, [None, 14, 14, 128], [2, 2],
                                    initializer='random',
                                    name='convT_4')
                layer4_2 = tf.concat([layer4_1, layer2_2], axis=3)
                layer4_3 = lrelu(
                    bn(
                        conv2d(layer4_2,
                               128, [3, 3],
                               initializer='random',
                               name='conv_4'), is_training))

            with tf.variable_scope('g_ab_hidden5'):
                layer5_1 = conv2d_t(layer4_3, [None, 28, 28, 64], [2, 2],
                                    initializer='random',
                                    name='convT5')
                layer5_2 = tf.concat([layer1_1, layer5_1], axis=3)
                layer5_3 = conv2d(layer5_2,
                                  1, [3, 3],
                                  initializer='random',
                                  name='conv5')
                layer5_4 = conv2d(layer5_3,
                                  1, [1, 1],
                                  initializer='random',
                                  name='conv6')
                gen_ab = tf.nn.sigmoid(layer5_4)

            return gen_ab, layer5_4
Пример #3
0
    def make_model(self, inputs, is_training):
        layer1_1 = relu(conv2d(inputs, 64, [3, 3], name='layer1_1'))
        layer1_2 = relu(conv2d(layer1_1, 64, [3, 3], name='layer1_2'))
        layer1_3 = max_pool(layer1_2, name='layer1_3')  # original image 1/2

        layer2_1 = relu(
            bn(conv2d(layer1_3, 128, [3, 3], name='layer2_1'), is_training))
        layer2_2 = relu(
            bn(conv2d(layer2_1, 128, [3, 3], name='layer2_2'), is_training))
        layer2_3 = max_pool(layer2_2, name='layer2_3')  # original image 1/4

        layer3_1 = relu(
            bn(conv2d(layer2_3, 256, [3, 3], name='layer3_1'), is_training))
        layer3_2 = relu(
            bn(conv2d(layer3_1, 256, [3, 3], name='layer3_2'), is_training))
        layer3_3 = max_pool(layer3_2, name='layer3_3')  # original image 1/8

        layer4_1 = relu(
            bn(conv2d(layer3_3, 512, [3, 3], name='layer4_1'), is_training))
        layer4_2 = relu(
            bn(conv2d(layer4_1, 512, [3, 3], name='layer4_2'), is_training))
        layer4_3 = max_pool(layer4_2, name='layer4_3')  # original image 1/16

        layer5_1 = relu(
            bn(conv2d(layer4_3, 512, [3, 3], name='layer5_1'), is_training))
        layer5_2 = relu(
            bn(conv2d(layer5_1, 512, [3, 3], name='layer5_2'), is_training))
        layer5_3 = max_pool(layer5_2, name='layer5_3')  # original image 1/32

        # make [batch, 1, 1, 2048] similary flatten in fully connected layer
        layer6_1 = relu(
            bn(conv2d(layer5_3, 2048, [7, 7], name='layer6_1'), is_training))
        layer6_2 = relu(
            bn(conv2d(layer6_1, 2048, [1, 1], name='layer6_2'), is_training))
        layer6_3 = relu(
            bn(conv2d(layer6_2, self.N_CLASS, [1, 1], name='layer6_3'),
               is_training))

        # FCN32 is not use previous pooling information
        # just last layer size up(x32)
        # conv2d_transpose로 upscaling 할때, strides 크기로 결정됨.
        # 만약, 32배로 사이즈를 늘리려면 strides=[1, 32, 32, 1], 16배로 늘리려면 strides=[1, 16, 16, 1]로 하면 되는 듯하다.
        layer7_1 = conv2d_t(layer6_3, [None, 224, 224, self.N_CLASS], [4, 4],
                            strides=[1, 32, 32, 1],
                            name='layer7_1')

        annot_pred = tf.argmax(layer7_1, axis=3)
        expand_pred = tf.expand_dims(annot_pred, dim=3)

        return layer7_1, expand_pred
Пример #4
0
    def make_model(self, inputs, is_training):
        with tf.variable_scope('ENCODER'):
            layer1_1 = conv2d(inputs, 32, [3, 3], name='layer1_1')
            layer1_2 = conv2d(layer1_1, 32, [3, 3], name='layer1_2')
            layer1_3 = max_pool(layer1_2, name='layer1_3')           # original image 1/2, (112, 112)
            
            layer2_1 = relu(bn(conv2d(layer1_3, 64, [3, 3], name='layer2_1'), is_training))
            layer2_2 = relu(bn(conv2d(layer2_1, 64, [3, 3], name='layer2_2'), is_training))
            layer2_3 = max_pool(layer2_2, name='layer2_3')           # original image 1/4, (56, 56)

            layer3_1 = relu(bn(conv2d(layer2_3, 128, [3, 3], name='layer3_1'), is_training))
            layer3_2 = relu(bn(conv2d(layer3_1, 128, [3, 3], name='layer3_2'), is_training))
            layer3_3 = max_pool(layer3_2, name='layer3_3')           # original image 1/8, (28, 28)
            
            layer4_1 = relu(bn(conv2d(layer3_3, 256, [3, 3], name='layer4_1'), is_training))
            layer4_2 = relu(bn(conv2d(layer4_1, 256, [3, 3], name='layer4_2'), is_training))
            layer4_3 = max_pool(layer4_2, name='layer4_3')           # original image 1/16, (14, 14)

            layer5_1 = relu(bn(conv2d(layer4_3, 512, [3, 3], name='layer5_1'), is_training))
            layer5_2 = relu(bn(conv2d(layer5_1, 512, [3, 3], name='layer5_2'), is_training))

        with tf.variable_scope('DECODER'):
            layer6_1 = relu(bn(conv2d_t(layer5_2, [None, 28, 28, 256], [2, 2], name='layer6_1'), is_training))
            layer6_2 = tf.concat([layer4_2, layer6_1], axis=3, name='layer6_2')
            layer6_3 = relu(bn(conv2d(layer6_2, 256, [3, 3], name='layer6_3'), is_training))
            layer6_4 = relu(bn(conv2d(layer6_3, 256, [3, 3], name='layer6_4'), is_training))

            l6_4_shape = layer6_4.get_shape()
            layer7_1 = relu(bn(conv2d_t(layer6_4, [None, 56, 56, 128], [2, 2], name='layer7_1'), is_training))
            layer7_2 = tf.concat([layer3_2, layer7_1], axis=3, name='layer7_2')
            layer7_3 = relu(bn(conv2d(layer7_2, 128, [3, 3], name='layer7_2'), is_training))
            layer7_4 = relu(bn(conv2d(layer7_3, 128, [3, 3], name='layer7_3'), is_training))

            l7_4_shape = layer7_4.get_shape()
            layer8_1 = relu(bn(conv2d_t(layer7_4, [None, 112, 112, 64], [2, 2], name='layer8_1'), is_training))
            layer8_2 = tf.concat([layer2_2, layer8_1], axis=3, name='layer8_2')
            layer8_3 = relu(bn(conv2d(layer8_2, 64, [3, 3], name='layer8_3'), is_training))
            layer8_4 = relu(bn(conv2d(layer8_3, 64, [3, 3], name='layer8_4'), is_training))

            l8_4_shape = layer8_4.get_shape()
            layer9_1 = relu(bn(conv2d_t(layer8_4, [None, 224, 224, 32], [2, 2], name='layer9_1'), is_training))
            layer9_2 = tf.concat([layer1_2, layer9_1], axis=3, name='layer9_2')
            layer9_3 = relu(bn(conv2d(layer9_2, self.N_CLASS, [3, 3], name='layer9_3'), is_training))
            layer9_4 = relu(bn(conv2d(layer9_3, self.N_CLASS, [3, 3], name='layer9_4'), is_training))

            logits = conv2d(layer9_4, self.N_CLASS, [1, 1], name='logits')
            annot_pred = tf.argmax(logits, axis=3)
            expand_pred = tf.expand_dims(annot_pred, dim=3)

            return logits, expand_pred, layer5_2
Пример #5
0
    def make_model(self, inputs, is_training):
        with tf.variable_scope('Darknet19'):
            net = lrelu(bn(conv2d(inputs, 32, [3, 3], name='conv1'), is_training))
            net = max_pool(net, name='pool1')

            net = lrelu(bn(conv2d(net, 64, [3, 3], name='conv2'), is_training))
            net = max_pool(net, name='pool2')

            net = lrelu(bn(conv2d(net, 128, [3, 3], name='conv3'), is_training))
            net = lrelu(bn(conv2d(net, 64, [1, 1], name='conv4'), is_training))
            net = lrelu(bn(conv2d(net, 128, [3, 3], name='conv5'), is_training))
            net = max_pool(net, name='pool3')

            net = lrelu(bn(conv2d(net, 256, [3, 3], name='conv6'), is_training))
            net = lrelu(bn(conv2d(net, 128, [1, 1], name='conv7'), is_training))
            net = lrelu(bn(conv2d(net, 256, [3, 3], name='conv8'), is_training))
            net = max_pool(net, name='pool4')

            net = lrelu(bn(conv2d(net, 512, [3, 3], name='conv9'), is_training))
            net = lrelu(bn(conv2d(net, 256, [1, 1], name='conv10'), is_training))
            net = lrelu(bn(conv2d(net, 512, [3, 3], name='conv11'), is_training))
            net = lrelu(bn(conv2d(net, 256, [3, 3], name='conv12'), is_training))
            skip = lrelu(bn(conv2d(net, 512, [3, 3], name='conv13'), is_training))
            net = max_pool(net, name='pool5')

            net = lrelu(bn(conv2d(net, 1024, [3, 3], name='conv14'), is_training))
            net = lrelu(bn(conv2d(net, 512, [1, 1], name='conv15'), is_training))
            net = lrelu(bn(conv2d(net, 1024, [3, 3], name='conv16'), is_training))
            net = lrelu(bn(conv2d(net, 512, [1, 1], name='conv17'), is_training))
            net = lrelu(bn(conv2d(net, 1024, [3, 3], name='conv18'), is_training))

        with tf.variable_scope('Detection'):
            net = lrelu(bn(conv2d(net, 1024, [3, 3], name='conv19'), is_training))
            net = lrelu(bn(conv2d(net, 1024, [3, 3], name='conv20'), is_training))

            passthrough = lrelu(bn(conv2d(skip, 64, [1, 1], name='conv21_passthrough'), is_training))
            passthrough = tf.space_to_depth(passthrough, block_size=2)

            concated = tf.concat([passthrough, net], axis=3)

            net = lrelu(bn(conv2d(concated, 1024, [3, 3], name='conv22'), is_training))

            out_depth = self.N_ANCHORS * (5 + self.N_CLASSES)
            net = conv2d(net, out_depth, [1, 1], name='conv23')
            
            return net
Пример #6
0
 def initial_block(self, inputs, is_training):
     conv = prelu(bn(
         conv2d(inputs, 13, [3, 3], name='init_conv', strides=[1, 2, 2, 1]),
         is_training),
                  name='init_conv')
     pool = max_pool(inputs, name='init_pool')
     concated = tf.concat([conv, pool], axis=3, name='init_concat')
     return concated
Пример #7
0
    def make_model(self, inputs, is_training):

        with tf.variable_scope('STAGE_1'):
            layer = relu(
                bn(
                    conv2d(inputs,
                           64, [7, 7],
                           strides=[1, 2, 2, 1],
                           name='initial_block'), is_training))
            layer = max_pool(layer)

        with tf.variable_scope('STAGE_2'):
            layer = self.conv_block(layer, [64, 64, 256],
                                    is_training,
                                    'a',
                                    s=1)
            layer = self.identity_block(layer, [64, 64, 256], is_training, 'b')
            layer = self.identity_block(layer, [64, 64, 256], is_training, 'c')

        with tf.variable_scope('STAGE_3'):
            layer = self.conv_block(layer, [128, 128, 512], is_training, 'a')
            layer = self.identity_block(layer, [128, 128, 512], is_training,
                                        'b')
            layer = self.identity_block(layer, [128, 128, 512], is_training,
                                        'c')

        with tf.variable_scope('STAGE_4'):
            layer = self.conv_block(layer, [256, 256, 1024], is_training, 'a')
            layer = self.identity_block(layer, [256, 256, 1024], is_training,
                                        'b')
            layer = self.identity_block(layer, [256, 256, 1024], is_training,
                                        'c')
            layer = self.identity_block(layer, [256, 256, 1024], is_training,
                                        'd')
            layer = self.identity_block(layer, [256, 256, 1024], is_training,
                                        'e')
            layer = self.identity_block(layer, [256, 256, 1024], is_training,
                                        'f')

        with tf.variable_scope('STAGE_5'):
            layer = self.conv_block(layer, [512, 512, 2048], is_training, 'a')
            layer = self.identity_block(layer, [512, 512, 2048], is_training,
                                        'b')
            layer = self.identity_block(layer, [512, 512, 2048], is_training,
                                        'c')

        with tf.variable_scope('FINAL_STAGE'):
            layer = avg_pool(layer, [1, 7, 7, 1], [1, 1, 1, 1],
                             padding='VALID')

            _, h, w, d = layer.get_shape().as_list()

            layer = tf.reshape(layer, [-1, h * w * d])
            layer = fully_connect(layer, self.N_CLASS, 'fc')

            return layer
Пример #8
0
    def make_model(self, inputs, keep_prob):
        conv1_1 = conv2d(inputs, 64, [3, 3], name='conv1_1')
        conv1_2 = conv2d(conv1_1, 64, [3, 3], name='conv1_2')
        pool1 = max_pool(conv1_2, name='pool1')

        conv2_1 = conv2d(pool1, 128, [3, 3], name='conv2_1')
        conv2_2 = conv2d(conv2_1, 128, [3, 3], name='conv2_2')
        pool2 = max_pool(conv2_2, name='pool2')

        conv3_1 = conv2d(pool2, 256, [3, 3], name='conv3_1')
        conv3_2 = conv2d(conv3_1, 256, [3, 3], name='conv3_2')
        conv3_3 = conv2d(conv3_2, 256, [3, 3], name='conv3_3')
        pool3 = max_pool(conv3_3, name='pool3')

        conv4_1 = conv2d(pool3, 512, [3, 3], name='conv4_1')
        conv4_2 = conv2d(conv4_1, 512, [3, 3], name='conv4_2')
        conv4_3 = conv2d(conv4_2, 512, [3, 3], name='conv4_3')
        pool4 = max_pool(conv4_3, name='pool4')

        conv5_1 = conv2d(pool4, 512, [3, 3], name='conv5_1')
        conv5_2 = conv2d(conv5_1, 512, [3, 3], name='conv5_2')
        conv5_3 = conv2d(conv5_2, 512, [3, 3], name='conv5_3')

        _, h, w, d = conv5_3.get_shape().as_list()

        flatten = tf.reshape(conv5_3, shape=[-1, h * w * d], name='flatten')
        fc1 = fully_connect(flatten, 4096, name='fc1')
        fc1_dropout = tf.nn.dropout(fc1,
                                    keep_prob=keep_prob,
                                    name='fc1_dropout')

        fc2 = fully_connect(fc1_dropout, 4096, name='fc2')
        fc2_dropout = tf.nn.dropout(fc2,
                                    keep_prob=keep_prob,
                                    name='fc2_dropout')

        logits = fully_connect(fc2_dropout, self.N_CLASS, name='fc3')

        return logits
Пример #9
0
    def make_model(self, inputs, is_training):
        """
            extract feature using ResNet. Encoder

        """
        with tf.variable_scope('ResNet50'):
            x = conv2d(inputs, 64, [7, 7], strides=[1, 2, 2, 1],
                       name='conv1')  # size 1/2
            x = bn(x, is_training)
            x = relu(x)
            x = max_pool(x, ksize=[1, 3, 3, 1], name='pool1')  # size 1/4

            x = self.conv_block(x, [64, 64, 256], '2_1', is_training, s=1)
            x = self.identity_block(x, [64, 64, 256], '2_2', is_training)
            x = self.identity_block(x, [64, 64, 256], '2_3', is_training)

            x = self.conv_block(x, [128, 128, 512], '3_1', is_training)
            x = self.identity_block(x, [128, 128, 512], '3_2', is_training)
            x = self.identity_block(x, [128, 128, 512], '3_3', is_training)

            x = self.atrous_conv_block(x, [256, 256, 1024],
                                       '4_1',
                                       2,
                                       is_training,
                                       s=1)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_2', 2,
                                           is_training)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_3', 2,
                                           is_training)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_4', 2,
                                           is_training)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_5', 2,
                                           is_training)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_6', 2,
                                           is_training)

            x = self.atrous_conv_block(x, [512, 512, 2048],
                                       '5_1',
                                       4,
                                       is_training,
                                       s=1)
            x = self.atrous_identity_block(x, [512, 512, 2048], '5_2', 4,
                                           is_training)
            x = self.atrous_identity_block(x, [512, 512, 2048], '5_3', 4,
                                           is_training)
        """
            Astrous Pyrimid Pooling. Decoder
        """
        with tf.variable_scope('ASPP'):
            rate6 = atrous_conv2d(x, self.N_CLASS, [3, 3], 6, name='rate6')
            rate6 = conv2d(rate6, self.N_CLASS, [1, 1], name='rate6_conv1')
            rate6 = conv2d(rate6, self.N_CLASS, [1, 1], name='rate6_conv2')

            rate12 = atrous_conv2d(x, self.N_CLASS, [3, 3], 12, name='rate12')
            rate12 = conv2d(rate12, self.N_CLASS, [1, 1], name='rate12_conv1')
            rate12 = conv2d(rate12, self.N_CLASS, [1, 1], name='rate12_conv2')

            rate18 = atrous_conv2d(x, self.N_CLASS, [3, 3], 18, name='rate18')
            rate18 = conv2d(rate18, self.N_CLASS, [1, 1], name='rate18_conv1')
            rate18 = conv2d(rate18, self.N_CLASS, [1, 1], name='rate18_conv2')

            rate24 = atrous_conv2d(x, self.N_CLASS, [3, 3], 24, name='rate24')
            rate24 = conv2d(rate24, self.N_CLASS, [1, 1], name='rate24_conv1')
            rate24 = conv2d(rate24, self.N_CLASS, [1, 1], name='rate24_conv2')

            # self.logits = tf.add_n([rate6, rate12, rate18, rate24])
            # self.out = tf.image.resize_bilinear(self.logits, size=[192, 192])
            add_aspp = tf.add_n([rate6, rate12, rate18, rate24])
            logits = tf.image.resize_bilinear(add_aspp,
                                              size=[self.RESIZE, self.RESIZE])

            pred = tf.argmax(logits, axis=3)
            pred = tf.expand_dims(pred, dim=3)

            return logits, pred
Пример #10
0
    def make_model(self, inputs, is_training):
        with tf.variable_scope('ResNet50'):
            x = conv2d(inputs, 64, [7, 7], strides=[1, 2, 2, 1],
                       name='conv1')  # size 1/2
            x = bn(x, is_training)
            x = relu(x)
            x = max_pool(x, ksize=[1, 3, 3, 1], name='max_pool1')  # size 1/4

            x = self.conv_block(x, [64, 64, 256], is_training, '2_1', s=1)
            x = self.identity_block(x, [64, 64, 256], is_training, '2_2')
            x = self.identity_block(x, [64, 64, 256], is_training, '2_3')

            x = self.conv_block(x, [128, 128, 512], is_training, '3_1')
            x = self.identity_block(x, [128, 128, 512], is_training, '3_2')
            x = self.identity_block(x, [128, 128, 512], is_training, '3_3')

            x = self.conv_block(x, [256, 256, 1024], is_training, '4_1')
            x = self.identity_block(x, [256, 256, 1024], is_training, '4_2')
            x = self.identity_block(x, [256, 256, 1024], is_training, '4_3')
            x = self.identity_block(x, [256, 256, 1024], is_training, '4_4')
            x = self.identity_block(x, [256, 256, 1024], is_training, '4_5')
            x = self.identity_block(x, [256, 256, 1024], is_training, '4_6')

            x = self.conv_block(x, [512, 512, 2048], is_training, '5_1')
            x = self.identity_block(x, [512, 512, 2048], is_training, '5_2')
            feature_map = self.identity_block(x, [512, 512, 2048], is_training,
                                              '5_3')  # size: (6, 6)

        with tf.variable_scope('Pyramid_Pool'):
            pool_1x1 = max_pool(feature_map,
                                ksize=[1, 6, 6, 1],
                                strides=[1, 6, 6, 1],
                                name='pool_1x1')
            pool_2x2 = max_pool(feature_map,
                                ksize=[1, 3, 3, 1],
                                strides=[1, 3, 3, 1],
                                name='pool_2x2')
            pool_3x3 = max_pool(feature_map,
                                ksize=[1, 2, 2, 1],
                                strides=[1, 2, 2, 1],
                                name='pool_3x3')
            pool_6x6 = max_pool(feature_map,
                                ksize=[1, 1, 1, 1],
                                strides=[1, 1, 1, 1],
                                name='pool_6x6')

            conv_1x1 = relu(
                bn(conv2d(pool_1x1, 512, [3, 3], name='conv_1x1'),
                   is_training))  # reduce dimension
            conv_2x2 = relu(
                bn(conv2d(pool_2x2, 512, [3, 3], name='conv_2x2'),
                   is_training))  # reduce dimension
            conv_3x3 = relu(
                bn(conv2d(pool_3x3, 512, [3, 3], name='conv_3x3'),
                   is_training))  # reduce dimension
            conv_6x6 = relu(
                bn(conv2d(pool_6x6, 512, [3, 3], name='conv_6x6'),
                   is_training))  # reduce dimension

            upconv_1x1 = tf.image.resize_bilinear(conv_1x1, [6, 6])
            upconv_2x2 = tf.image.resize_bilinear(conv_2x2, [6, 6])
            upconv_3x3 = tf.image.resize_bilinear(conv_3x3, [6, 6])
            upconv_6x6 = tf.image.resize_bilinear(conv_6x6, [6, 6])

            concated = tf.concat(
                [feature_map, upconv_1x1, upconv_2x2, upconv_3x3, upconv_6x6],
                axis=3)

            out = relu(
                bn(conv2d(concated, 512, [3, 3], name='out1'), is_training))

            out = conv2d_t(out, [None, 12, 12, 256], [3, 3],
                           name='out2')  # (12, 12)
            out = conv2d_t(out, [None, 24, 24, self.N_CLASS], [3, 3],
                           name='out3')  # (24, 24)
            out = conv2d_t(out, [None, 48, 48, self.N_CLASS], [3, 3],
                           name='out4')  # (24, 24)
            out = conv2d_t(out, [None, self.RESIZE, self.RESIZE, self.N_CLASS],
                           [3, 3],
                           name='out5',
                           strides=[1, 4, 4, 1])  # (24, 24)

            pred = tf.argmax(out, axis=3)
            pred = tf.expand_dims(pred, dim=3)

            return out, pred
Пример #11
0
    def bottleneck(self,
                   inputs,
                   out_depth,
                   f_h,
                   f_w,
                   is_training,
                   keep_prob,
                   dilated_rate=None,
                   mode=None,
                   scope=None):
        reduce_depth = int(inputs.get_shape().as_list()[3] / 4)

        with tf.variable_scope(scope):
            if mode == 'downsampling':
                main_branch = max_pool(inputs, name='_pool')
                depth_to_pad = abs(inputs.get_shape().as_list()[3] - out_depth)
                paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0],
                                                 [0, depth_to_pad]])
                main_branch = tf.pad(main_branch,
                                     paddings=paddings,
                                     name='_main_padding')

                sub_branch = prelu(bn(
                    conv2d(inputs,
                           reduce_depth, [2, 2],
                           name='_conv1',
                           strides=[1, 2, 2, 1]), is_training),
                                   name='prelu_conv1')
                sub_branch = prelu(bn(
                    conv2d(sub_branch,
                           reduce_depth, [f_h, f_w],
                           name='_conv2',
                           strides=[1, 1, 1, 1]), is_training),
                                   name='prelu_conv2')
                sub_branch = prelu(bn(
                    conv2d(sub_branch,
                           out_depth, [1, 1],
                           name='_conv3',
                           strides=[1, 1, 1, 1]), is_training),
                                   name='prelu_conv3')
                sub_branch = prelu(spatial_dropout(sub_branch, keep_prob),
                                   name='prelu_dropout')

                out = prelu(tf.add(main_branch, sub_branch), name='prelu_add')
                return out

            elif mode == 'dilated':
                main_branch = inputs

                sub_branch = prelu(bn(
                    conv2d(
                        inputs,
                        reduce_depth,
                        [1, 1],
                        name='_conv1',
                    ), is_training),
                                   name='prelu_conv1')
                sub_branch = prelu(bn(
                    atrous_conv2d(sub_branch,
                                  reduce_depth, [f_h, f_w],
                                  dilated_rate,
                                  name='_conv2'), is_training),
                                   name='prelu_conv2')
                sub_branch = prelu(bn(
                    conv2d(inputs, out_depth, [1, 1], name='_conv3'),
                    is_training),
                                   name='prelu_conv3')
                sub_branch = prelu(spatial_dropout(sub_branch, keep_prob),
                                   name='prelu_dropout')

                out = prelu(tf.add(main_branch, sub_branch), name='prelu_add')
                return out

            elif mode == 'asymmetric':
                main_branch = inputs

                sub_branch = prelu(bn(
                    conv2d(inputs, reduce_depth, [1, 1], name='_conv1'),
                    is_training),
                                   name='prelu_conv1')
                sub_branch = prelu(bn(
                    conv2d(sub_branch, reduce_depth, [f_h, 1], name='_conv2'),
                    is_training),
                                   name='prelu_conv2')
                sub_branch = prelu(bn(
                    conv2d(sub_branch, reduce_depth, [1, f_w], name='_conv3'),
                    is_training),
                                   name='prelu_conv3')
                sub_branch = prelu(bn(
                    conv2d(sub_branch, out_depth, [1, 1], name='_conv4'),
                    is_training),
                                   name='prelu_conv4')
                sub_branch = prelu(spatial_dropout(sub_branch, keep_prob),
                                   name='prelu_dropout')

                out = prelu(tf.add(main_branch, sub_branch), name='prelu_add')
                return out

            elif mode == 'upsampling':
                # 논문에서 나오는 unpool 대신 bilinear interpolation 사용
                in_shape = inputs.get_shape().as_list()

                main_branch = tf.image.resize_bilinear(
                    inputs, size=[in_shape[1] * 2, in_shape[2] * 2])
                main_branch = prelu(bn(
                    conv2d(main_branch, out_depth, [3, 3], name='_conv0'),
                    is_training),
                                    name='prelu_conv1')

                sub_branch = prelu(bn(
                    conv2d(inputs, reduce_depth, [1, 1], name='_conv1'),
                    is_training),
                                   name='prelu_conv2')
                sub_branch = prelu(bn(
                    conv2d_t(sub_branch, [
                        in_shape[0], in_shape[1] * 2, in_shape[2] * 2,
                        reduce_depth
                    ], [3, 3],
                             name='_conv2'), is_training),
                                   name='prelu_conv3')
                sub_branch = prelu(bn(
                    conv2d(sub_branch, out_depth, [1, 1], name='_conv3'),
                    is_training),
                                   name='prelu_conv4')
                sub_branch = prelu(spatial_dropout(sub_branch, keep_prob),
                                   name='prelu_dropout')

                out = prelu(tf.add(main_branch, sub_branch), name='prelu_add')
                return out

            elif mode == 'normal':
                main_branch = inputs

                sub_branch = prelu(bn(
                    conv2d(inputs,
                           reduce_depth, [1, 1],
                           name='_conv1',
                           strides=[1, 1, 1, 1]), is_training),
                                   name='prelu_conv1')
                sub_branch = prelu(bn(
                    conv2d(sub_branch,
                           reduce_depth, [f_h, f_w],
                           name='_conv2',
                           strides=[1, 1, 1, 1]), is_training),
                                   name='prelu_conv2')
                sub_branch = prelu(bn(
                    conv2d(sub_branch,
                           out_depth, [1, 1],
                           name='_conv3',
                           strides=[1, 1, 1, 1]), is_training),
                                   name='prelu_conv3')
                sub_branch = prelu(spatial_dropout(sub_branch, keep_prob),
                                   name='prelu_dropout')

                out = prelu(tf.add(main_branch, sub_branch), name='prelu_add')
                return out
Пример #12
0
    def make_model(self, inputs, is_training):
        """
            extract feature using ResNet. Encoder

        """
        with tf.variable_scope('ResNet50'):
            x = conv2d(inputs, 64, [7, 7], strides=[1, 2, 2, 1],
                       name='conv1')  # size 1/2
            x = bn(x, is_training)
            x = relu(x)
            x = max_pool(x, ksize=[1, 3, 3, 1], name='pool1')  # size 1/4

            x = self.conv_block(x, [64, 64, 256], '2_1', is_training, s=1)
            x = self.identity_block(x, [64, 64, 256], '2_2', is_training)
            x = self.identity_block(x, [64, 64, 256], '2_3', is_training)

            x = self.conv_block(x, [128, 128, 512], '3_1', is_training)
            x = self.identity_block(x, [128, 128, 512], '3_2', is_training)
            x = self.identity_block(x, [128, 128, 512], '3_3', is_training)

            x = self.atrous_conv_block(x, [256, 256, 1024],
                                       '4_1',
                                       2,
                                       is_training,
                                       s=1)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_2', 2,
                                           is_training)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_3', 2,
                                           is_training)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_4', 2,
                                           is_training)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_5', 2,
                                           is_training)
            x = self.atrous_identity_block(x, [256, 256, 1024], '4_6', 2,
                                           is_training)

            x = self.atrous_conv_block(x, [512, 512, 2048],
                                       '5_1',
                                       4,
                                       is_training,
                                       s=1)
            x = self.atrous_identity_block(x, [512, 512, 2048], '5_2', 4,
                                           is_training)
            x = self.atrous_identity_block(x, [512, 512, 2048], '5_3', 4,
                                           is_training)
        """
            Astrous Pyrimid Pooling. Decoder
        """
        with tf.variable_scope('ASPP'):
            feature_map_shape = x.get_shape().as_list()

            # global average pooling
            # feature 맵의 height, width를 평균을 낸다.
            feature_map = tf.reduce_mean(x, [1, 2], keepdims=True)

            feature_map = conv2d(feature_map,
                                 256, [1, 1],
                                 name='gap_feature_map')
            feature_map = tf.image.resize_bilinear(
                feature_map, [feature_map_shape[1], feature_map_shape[2]])

            rate1 = conv2d(x, 256, [1, 1], name='rate1')
            rate6 = atrous_conv2d(x, 256, [3, 3], rate=6, name='rate6')
            rate12 = atrous_conv2d(x, 256, [3, 3], rate=12, name='rate12')
            rate18 = atrous_conv2d(x, 256, [3, 3], rate=18, name='rate18')

            concated = tf.concat([feature_map, rate1, rate6, rate12, rate18],
                                 axis=3)

            net = conv2d(concated, 256, [1, 1], name='net')

            logits = conv2d(net, self.N_CLASS, [1, 1], name='logits')
            logits = tf.image.resize_bilinear(logits,
                                              size=[self.RESIZE, self.RESIZE],
                                              name='out')

            pred = tf.argmax(logits, axis=3)
            pred = tf.expand_dims(pred, dim=3)

            return logits, pred