Пример #1
0
    def test_scale_proxy(self):
        """
        target: test milvus operation after proxy expand
        method: 1.deploy 1 proxy replicas
                2.milvus e2e test in parallel
                3.expand proxy pod from 1 to 5
                4.milvus e2e test
                5.shrink proxy from 5 to 2
        expected: 1.verify data consistent and func work
        """
        # deploy milvus cluster with one proxy
        release_name = "scale-proxy"
        image = f'{constants.IMAGE_REPOSITORY}:{constants.IMAGE_TAG}'
        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.proxy.replicas': 1,
            'spec.components.dataNode.replicas': 2,
            'spec.config.dataCoord.enableCompaction': True,
            'spec.config.dataCoord.enableGarbageCollection': True
        }
        mic = MilvusOperator()
        mic.install(data_config)
        healthy = mic.wait_for_healthy(release_name, constants.NAMESPACE, timeout=1200)
        log.info(f"milvus healthy: {healthy}")
        host = mic.endpoint(release_name, constants.NAMESPACE).split(':')[0]
        # host = "10.98.0.7"

        c_name = cf.gen_unique_str(prefix)
        self.e2e_milvus_parallel(5, host, c_name)
        log.info('Milvus test before expand')

        # expand proxy replicas from 1 to 5
        mic.upgrade(release_name, {'spec.components.proxy.replicas': 5}, constants.NAMESPACE)
        wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

        self.e2e_milvus_parallel(5, host, c_name)
        log.info('Milvus test after expand')

        # expand proxy replicas from 5 to 2
        mic.upgrade(release_name, {'spec.components.proxy.replicas': 2}, constants.NAMESPACE)
        wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

        self.e2e_milvus_parallel(2, host, c_name)
        log.info('Milvus test after shrink')
Пример #2
0
def scale_up_milvus(release_name):
    cus_configs = {'spec.components.queryNode.replicas': 2}
    milvus_op = MilvusOperator()
    log.info(f"scale up milvus with configs: {cus_configs}")
    milvus_op.upgrade(release_name, cus_configs, namespace=namespace)
    healthy = milvus_op.wait_for_healthy(release_name, namespace, timeout=1200)
    log.info(f"milvus healthy: {healthy}")
    if healthy:
        endpoint = milvus_op.endpoint(release_name, namespace).split(':')
        log.info(f"milvus endpoint: {endpoint}")
        host = endpoint[0]
        port = endpoint[1]
        return release_name, host, port
    else:
        return release_name, None, None
Пример #3
0
def install_milvus(release_name):
    cus_configs = {
        'spec.components.image': 'milvusdb/milvus-dev:master-20211206-b20a238',
        'metadata.namespace': namespace,
        'metadata.name': release_name,
        'spec.components.proxy.serviceType': 'LoadBalancer'
    }
    milvus_op = MilvusOperator()
    log.info(f"install milvus with configs: {cus_configs}")
    milvus_op.install(cus_configs)
    healthy = milvus_op.wait_for_healthy(release_name, namespace, timeout=1200)
    log.info(f"milvus healthy: {healthy}")
    if healthy:
        endpoint = milvus_op.endpoint(release_name, namespace).split(':')
        log.info(f"milvus endpoint: {endpoint}")
        host = endpoint[0]
        port = endpoint[1]
        return release_name, host, port
    else:
        return release_name, None, None
Пример #4
0
def deploy_default_milvus(release_name, image_tag=None):
    if image_tag is None:
        image = f'{constants.IMAGE_REPO}:{constants.IMAGE_TAG}'
    else:
        image = f'{constants.IMAGE_REPO}:{image_tag}'
    default_config = {
        'metadata.namespace': constants.NAMESPACE,
        'metadata.name': release_name,
        'spec.components.image': image,
        'spec.components.proxy.serviceType': 'LoadBalancer'
    }

    milvusOp = MilvusOperator()
    milvusOp.install(default_config)

    if milvusOp.wait_for_healthy(release_name, namespace=constants.NAMESPACE):
        endpoint = milvusOp.endpoint(release_name, constants.NAMESPACE)
        endpoint = endpoint.split(':')
        host = endpoint[0]
        port = int(endpoint[-1])
        return milvusOp, host, port
    else:
        raise Exception(f"Failed to install {release_name}")
Пример #5
0
    def test_shrink_index_node(self):
        """
        target: test shrink indexNode from 2 to 1
        method: 1.deploy two indexNode
                2.create index with two indexNode
                3.shrink indexNode from 2 to 1
                4.create index with 1 indexNode
        expected: The cost of one indexNode is about twice that of two indexNodes
        """
        release_name = "shrink-index"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.indexNode.replicas': 2,
            'spec.components.dataNode.replicas': 2,
            'spec.config.dataCoord.enableCompaction': True,
            'spec.config.dataCoord.enableGarbageCollection': True
        }
        mic = MilvusOperator()
        mic.install(data_config)
        if mic.wait_for_healthy(release_name,
                                constants.NAMESPACE,
                                timeout=1800):
            host = mic.endpoint(release_name,
                                constants.NAMESPACE).split(':')[0]
        else:
            raise MilvusException(message=f'Milvus healthy timeout 1800s')

        try:
            # connect
            connections.add_connection(default={"host": host, "port": 19530})
            connections.connect(alias='default')

            data = cf.gen_default_dataframe_data(nb)

            # create
            c_name = "index_scale_one"
            collection_w = ApiCollectionWrapper()
            # collection_w.init_collection(name=c_name)
            collection_w.init_collection(
                name=c_name, schema=cf.gen_default_collection_schema())
            # insert
            loop = 10
            for i in range(loop):
                collection_w.insert(data)
            assert collection_w.num_entities == nb * loop

            # create index on collection one and two
            start = datetime.datetime.now()
            collection_w.create_index(ct.default_float_vec_field_name,
                                      default_index_params)
            assert collection_w.has_index()[0]
            t0 = datetime.datetime.now() - start

            log.info(f'Create index on 2 indexNode cost t0: {t0}')

            collection_w.drop_index()
            assert not collection_w.has_index()[0]

            # shrink indexNode from 2 to 1
            mic.upgrade(release_name,
                        {'spec.components.indexNode.replicas': 1},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            start = datetime.datetime.now()
            collection_w.create_index(ct.default_float_vec_field_name,
                                      default_index_params)
            assert collection_w.has_index()[0]
            t1 = datetime.datetime.now() - start
            log.info(f'Create index on 1 indexNode cost t1: {t1}')
            collection_w.drop_index()

            start = datetime.datetime.now()
            collection_w.create_index(ct.default_float_vec_field_name,
                                      default_index_params)
            assert collection_w.has_index()[0]
            t2 = datetime.datetime.now() - start
            log.info(f'Create index on 1 indexNode cost t2: {t2}')

            log.debug(f'one indexNode: {t2}')
            log.debug(f't2 is {t2}, t0 is {t0}, t2/t0 is {t2 / t0}')
            # assert round(t2 / t0) == 2

        except Exception as e:
            raise Exception(str(e))

        finally:
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE,
                         label_selector=label,
                         release_name=release_name)
            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #6
0
    def test_scale_query_node(self):
        """
        target: test scale queryNode
        method: 1.deploy milvus cluster with 1 queryNode
                2.prepare work (connect, create, insert, index and load)
                3.continuously search (daemon thread)
                4.expand queryNode from 2 to 5
                5.continuously insert new data (daemon thread)
                6.shrink queryNode from 5 to 3
        expected: Verify milvus remains healthy and search successfully during scale
        """
        release_name = "scale-query"
        query_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image': 'harbor.zilliz.cc/milvus/milvus:master-20211202-ed546d0',
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.queryNode.replicas': 1,
            'spec.config.dataCoord.enableCompaction': True,
            'spec.config.dataCoord.enableGarbageCollection': True
        }
        mic = MilvusOperator()
        mic.install(query_config)
        healthy = mic.wait_for_healthy(release_name, constants.NAMESPACE, timeout=1200)
        log.info(f"milvus healthy: {healthy}")
        host = mic.endpoint(release_name, constants.NAMESPACE).split(':')[0]
        # host = "10.98.0.8"

        # connect
        connections.add_connection(default={"host": host, "port": 19530})
        connections.connect(alias='default')

        # create
        c_name = cf.gen_unique_str("scale_query")
        # c_name = 'scale_query_DymS7kI4'
        collection_w = ApiCollectionWrapper()
        collection_w.init_collection(name=c_name, schema=cf.gen_default_collection_schema(), shards_num=2)

        # insert two segments
        for i in range(3):
            df = cf.gen_default_dataframe_data(nb)
            collection_w.insert(df)
            log.debug(collection_w.num_entities)

        # create index
        collection_w.create_index(ct.default_float_vec_field_name, default_index_params)
        assert collection_w.has_index()[0]
        assert collection_w.index()[0] == Index(collection_w.collection, ct.default_float_vec_field_name,
                                                default_index_params)

        # load
        collection_w.load()

        # scale queryNode to 5
        mic.upgrade(release_name, {'spec.components.queryNode.replicas': 5}, constants.NAMESPACE)

        # continuously search
        def do_search():
            while True:
                search_res, _ = collection_w.search(cf.gen_vectors(1, ct.default_dim),
                                                    ct.default_float_vec_field_name,
                                                    ct.default_search_params, ct.default_limit)
                log.debug(search_res[0].ids)
                assert len(search_res[0].ids) == ct.default_limit

        t_search = threading.Thread(target=do_search, args=(), daemon=True)
        t_search.start()

        # wait new QN running, continuously insert
        # time.sleep(10)
        healthy = mic.wait_for_healthy(release_name, constants.NAMESPACE, timeout=1200)
        log.info(f"milvus healthy after scale up: {healthy}")
        # wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

        def do_insert():
            while True:
                tmp_df = cf.gen_default_dataframe_data(1000)
                collection_w.insert(tmp_df)

        t_insert = threading.Thread(target=do_insert, args=(), daemon=True)
        t_insert.start()

        log.debug(collection_w.num_entities)
        time.sleep(20)
        log.debug("Expand querynode test finished")

        mic.upgrade(release_name, {'spec.components.queryNode.replicas': 3}, constants.NAMESPACE)
        time.sleep(60)
        wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

        log.debug(collection_w.num_entities)
        time.sleep(60)
        log.debug("Shrink querynode test finished")
Пример #7
0
    def test_expand_index_node(self):
        """
        target: test expand indexNode from 1 to 2
        method: 1.deploy two indexNode
                2.create index with two indexNode
                3.expand indexNode from 1 to 2
                4.create index with one indexNode
        expected: The cost of one indexNode is about twice that of two indexNodes
        """
        release_name = "scale-index"
        image = f'{constants.IMAGE_REPOSITORY}:{constants.IMAGE_TAG}'
        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.indexNode.replicas': 1,
            'spec.components.dataNode.replicas': 2,
            'spec.config.dataCoord.enableCompaction': True,
            'spec.config.dataCoord.enableGarbageCollection': True
        }
        mic = MilvusOperator()
        mic.install(data_config)
        healthy = mic.wait_for_healthy(release_name,
                                       constants.NAMESPACE,
                                       timeout=1200)
        log.info(f"milvus healthy: {healthy}")
        host = mic.endpoint(release_name, constants.NAMESPACE).split(':')[0]
        # host = '10.98.0.8'

        # connect
        connections.add_connection(default={"host": host, "port": 19530})
        connections.connect(alias='default')

        data = cf.gen_default_dataframe_data(nb)

        # create
        c_name = "index_scale_one"
        collection_w = ApiCollectionWrapper()
        # collection_w.init_collection(name=c_name)
        collection_w.init_collection(name=c_name,
                                     schema=cf.gen_default_collection_schema())

        # insert
        loop = 100
        for i in range(loop):
            collection_w.insert(data, timeout=60)
        assert collection_w.num_entities == nb * loop

        # create index on collection
        # note that the num of segments and the num of indexNode are related to indexing time
        collection_w.drop_index()
        start = datetime.datetime.now()
        collection_w.create_index(ct.default_float_vec_field_name,
                                  default_index_params)
        assert collection_w.has_index()[0]
        t0 = datetime.datetime.now() - start

        log.debug(f't0: {t0}')

        collection_w.drop_index()
        assert not collection_w.has_index()[0]

        # expand indexNode from 1 to 2
        mic.upgrade(release_name, {'spec.components.indexNode.replicas': 2},
                    constants.NAMESPACE)
        time.sleep(60)
        mic.wait_for_healthy(release_name, constants.NAMESPACE)

        start = datetime.datetime.now()
        collection_w.create_index(ct.default_float_vec_field_name,
                                  default_index_params)
        assert collection_w.has_index()[0]
        t1 = datetime.datetime.now() - start

        log.debug(f't1: {t1}')
        assert round(t0 / t1) == 2
Пример #8
0
    def test_scale_data_node(self):
        """
        target: test scale dataNode
        method: 1.deploy milvus cluster with 2 dataNode
                2.create collection with shards_num=5
                3.continuously insert new data (daemon thread)
                4.expand dataNode from 2 to 5
                5.create new collection with shards_num=2
                6.continuously insert new collection new data (daemon thread)
                7.shrink dataNode from 5 to 3
        expected: Verify milvus remains healthy, Insert and flush successfully during scale
                  Average dataNode memory usage
        """
        release_name = "scale-data"
        image = f'{constants.IMAGE_REPOSITORY}:{constants.IMAGE_TAG}'
        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.dataNode.replicas': 2,
            'spec.config.dataCoord.enableCompaction': True,
            'spec.config.dataCoord.enableGarbageCollection': True
        }
        mic = MilvusOperator()
        mic.install(data_config)
        healthy = mic.wait_for_healthy(release_name,
                                       constants.NAMESPACE,
                                       timeout=1200)
        log.info(f"milvus healthy: {healthy}")
        host = mic.endpoint(release_name, constants.NAMESPACE).split(':')[0]
        # host = '10.98.0.4'

        # connect
        connections.add_connection(default={"host": host, "port": 19530})
        connections.connect(alias='default')

        # create
        c_name = cf.gen_unique_str("scale_query")
        # c_name = 'scale_query_DymS7kI4'
        collection_w = ApiCollectionWrapper()
        collection_w.init_collection(name=c_name,
                                     schema=cf.gen_default_collection_schema(),
                                     shards_num=5)

        tmp_nb = 10000

        def do_insert():
            while True:
                tmp_df = cf.gen_default_dataframe_data(tmp_nb)
                collection_w.insert(tmp_df)
                log.debug(collection_w.num_entities)

        t_insert = threading.Thread(target=do_insert, args=(), daemon=True)
        t_insert.start()

        # scale dataNode to 5
        mic.upgrade(release_name, {'spec.components.dataNode.replicas': 5},
                    constants.NAMESPACE)
        time.sleep(300)
        log.debug("Expand dataNode test finished")

        # create new collection and insert
        new_c_name = cf.gen_unique_str("scale_query")
        collection_w_new = ApiCollectionWrapper()
        collection_w_new.init_collection(
            name=new_c_name,
            schema=cf.gen_default_collection_schema(),
            shards_num=2)

        def do_new_insert():
            while True:
                tmp_df = cf.gen_default_dataframe_data(tmp_nb)
                collection_w_new.insert(tmp_df)
                log.debug(collection_w_new.num_entities)

        t_insert_new = threading.Thread(target=do_new_insert,
                                        args=(),
                                        daemon=True)
        t_insert_new.start()

        # scale dataNode to 3
        mic.upgrade(release_name, {'spec.components.dataNode.replicas': 3},
                    constants.NAMESPACE)
        wait_pods_ready(constants.NAMESPACE,
                        f"app.kubernetes.io/instance={release_name}")

        log.debug(collection_w.num_entities)
        time.sleep(300)
        log.debug("Shrink dataNode test finished")
Пример #9
0
    def test_scale_proxy(self):
        """
        target: test milvus operation after proxy expand
        method: 1.deploy 1 proxy replicas
                2.milvus e2e test in parallel
                3.expand proxy pod from 1 to 5
                4.milvus e2e test
                5.shrink proxy from 5 to 2
        expected: 1.verify data consistent and func work
        """
        # deploy milvus cluster with one proxy
        fail_count = 0
        release_name = "scale-proxy"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.mode': 'cluster',
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.proxy.replicas': 1,
            'spec.components.dataNode.replicas': 2,
            'spec.config.common.retentionDuration': 60
        }
        mic = MilvusOperator()
        mic.install(data_config)
        if mic.wait_for_healthy(release_name, constants.NAMESPACE, timeout=1800):
            host = mic.endpoint(release_name, constants.NAMESPACE).split(':')[0]
        else:
            raise MilvusException(message=f'Milvus healthy timeout 1800s')

        try:
            c_name = cf.gen_unique_str("proxy_scale")
            e2e_milvus_parallel(2, host, c_name)
            log.info('Milvus test before expand')

            # expand proxy replicas from 1 to 5
            mic.upgrade(release_name, {'spec.components.proxy.replicas': 5}, constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

            e2e_milvus_parallel(5, host, c_name)
            log.info('Milvus test after expand')

            # expand proxy replicas from 5 to 2
            mic.upgrade(release_name, {'spec.components.proxy.replicas': 2}, constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

            e2e_milvus_parallel(2, host, c_name)
            log.info('Milvus test after shrink')

            connections.connect('default', host=host, port=19530)
            collection_w = ApiCollectionWrapper()
            collection_w.init_collection(name=c_name)
            """
            total start 2+5+2 process to run e2e, each time insert default_nb data, But one of the 2 processes started
            for the first time did not insert due to collection creation exception. So actually insert eight times
            """
            assert collection_w.num_entities == 8 * default_nb

        except Exception as e:
            log.error(str(e))
            fail_count += 1
            # raise Exception(str(e))

        finally:
            log.info(f'Test finished with {fail_count} fail request')
            assert fail_count <= 1
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE, label_selector=label, release_name=release_name)
            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #10
0
    def test_scale_query_node(self):
        """
        target: test scale queryNode
        method: 1.deploy milvus cluster with 1 queryNode
                2.prepare work (connect, create, insert, index and load)
                3.continuously search (daemon thread)
                4.expand queryNode from 2 to 5
                5.continuously insert new data (daemon thread)
                6.shrink queryNode from 5 to 3
        expected: Verify milvus remains healthy and search successfully during scale
        """
        fail_count = 0
        release_name = "scale-query"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        query_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.queryNode.replicas': 1,
            'spec.config.dataCoord.enableCompaction': True,
            'spec.config.dataCoord.enableGarbageCollection': True
        }
        mic = MilvusOperator()
        mic.install(query_config)
        if mic.wait_for_healthy(release_name, constants.NAMESPACE, timeout=1200):
            host = mic.endpoint(release_name, constants.NAMESPACE).split(':')[0]
        else:
            # log.warning(f'Deploy {release_name} timeout and ready to uninstall')
            # mic.uninstall(release_name, namespace=constants.NAMESPACE)
            raise BaseException(f'Milvus healthy timeout 1200s')

        try:
            # connect
            connections.add_connection(default={"host": host, "port": 19530})
            connections.connect(alias='default')

            # create
            c_name = cf.gen_unique_str("scale_query")
            # c_name = 'scale_query_DymS7kI4'
            collection_w = ApiCollectionWrapper()
            collection_w.init_collection(name=c_name, schema=cf.gen_default_collection_schema(), shards_num=2)

            # insert two segments
            for i in range(3):
                df = cf.gen_default_dataframe_data(nb)
                collection_w.insert(df)
                log.debug(collection_w.num_entities)

            # create index
            collection_w.create_index(ct.default_float_vec_field_name, default_index_params)
            assert collection_w.has_index()[0]
            assert collection_w.index()[0] == Index(collection_w.collection, ct.default_float_vec_field_name,
                                                    default_index_params)

            # load
            collection_w.load()

            # scale queryNode to 5
            mic.upgrade(release_name, {'spec.components.queryNode.replicas': 5}, constants.NAMESPACE)

            # continuously search
            def do_search():
                while True:
                    search_res, _ = collection_w.search(cf.gen_vectors(1, ct.default_dim),
                                                        ct.default_float_vec_field_name,
                                                        ct.default_search_params, ct.default_limit)
                    log.debug(search_res[0].ids)
                    assert len(search_res[0].ids) == ct.default_limit

            t_search = threading.Thread(target=do_search, args=(), daemon=True)
            t_search.start()

            # wait new QN running, continuously insert
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

            def do_insert():
                while True:
                    tmp_df = cf.gen_default_dataframe_data(1000)
                    collection_w.insert(tmp_df)

            t_insert = threading.Thread(target=do_insert, args=(), daemon=True)
            t_insert.start()

            log.debug(collection_w.num_entities)
            time.sleep(20)
            log.debug("Expand querynode test finished")

            mic.upgrade(release_name, {'spec.components.queryNode.replicas': 3}, constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

            log.debug(collection_w.num_entities)
            time.sleep(60)
            log.debug("Shrink querynode test finished")

        except Exception as e:
            log.error(str(e))
            fail_count += 1
            # raise Exception(str(e))

        finally:
            log.info(f'Test finished with {fail_count} fail request')
            assert fail_count <= 1
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE, label_selector=label, release_name=release_name)
            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #11
0
    def test_expand_data_node(self):
        """
        target: test create and insert api after expand dataNode pod
        method: 1.create collection a and insert df
                2.expand dataNode pod from 1 to 2
                3.verify collection a property and verify create and insert of new collection
        expected: two collection create and insert op are both correctly
        """
        # deploy all nodes one pod cluster milvus with helm
        release_name = "scale-data"
        # env = HelmEnv(release_name=release_name)
        # host = env.helm_install_cluster_milvus()

        # deploy cluster milvus with dataNode 1 replicas
        default_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image':
            'milvusdb/milvus-dev:master-20211020-b40513b',
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'dependencies.etcd.inCluster.deletionPolicy': 'Delete',
            'dependencies.etcd.inCluster.pvcDeletion': 'true',
            'dependencies.pulsar.inCluster.deletionPolicy': 'Delete',
            'dependencies.pulsar.inCluster.pvcDeletion': 'true',
            'dependencies.storage.inCluster.deletionPolicy': 'Delete',
            'dependencies.storage.inCluster.pvcDeletion': 'true',
        }
        milvusOp = MilvusOperator()
        milvusOp.install(default_config)
        if milvusOp.wait_for_healthy(release_name,
                                     namespace=constants.NAMESPACE):
            endpoint = milvusOp.endpoint(release_name, constants.NAMESPACE)
            endpoint = endpoint.split(':')
            host = endpoint[0]
            port = int(endpoint[-1])
        else:
            raise Exception(f"Failed to install {release_name}")

        # connect
        connections.add_connection(default={"host": host, "port": port})
        connections.connect(alias='default')
        # create
        c_name = cf.gen_unique_str(prefix)
        collection_w = ApiCollectionWrapper()
        collection_w.init_collection(name=c_name,
                                     schema=cf.gen_default_collection_schema())
        # # insert
        data = cf.gen_default_list_data(ct.default_nb)
        mutation_res, _ = collection_w.insert(data)
        assert mutation_res.insert_count == ct.default_nb
        # scale dataNode to 2 pods
        milvusOp.upgrade(release_name,
                         {'spec.components.dataNode.replicas': 2},
                         constants.NAMESPACE)
        # env.helm_upgrade_cluster_milvus(dataNode=2)
        # after scale, assert data consistent
        assert utility.has_collection(c_name)
        assert collection_w.num_entities == ct.default_nb
        # assert new operations
        new_cname = cf.gen_unique_str(prefix)
        new_collection_w = ApiCollectionWrapper()
        new_collection_w.init_collection(
            name=new_cname, schema=cf.gen_default_collection_schema())
        new_mutation_res, _ = new_collection_w.insert(data)
        assert new_mutation_res.insert_count == ct.default_nb
        assert new_collection_w.num_entities == ct.default_nb
        # assert old collection ddl
        mutation_res_2, _ = collection_w.insert(data)
        assert mutation_res.insert_count == ct.default_nb
        assert collection_w.num_entities == ct.default_nb * 2

        collection_w.drop()
        new_collection_w.drop()
Пример #12
0
    def test_scale_proxy(self):
        """
        target: test milvus operation after proxy expand
        method: 1.deploy 1 proxy replicas
                2.milvus e2e test in parallel
                3.expand proxy pod from 1 to 5
                4.milvus e2e test
                5.shrink proxy from 5 to 2
        expected: 1.verify data consistent and func work
        """
        # deploy milvus cluster with one proxy
        fail_count = 0
        release_name = "scale-proxy"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.proxy.replicas': 1,
            'spec.components.dataNode.replicas': 2,
            'spec.config.dataCoord.enableCompaction': True,
            'spec.config.dataCoord.enableGarbageCollection': True
        }
        mic = MilvusOperator()
        mic.install(data_config)
        if mic.wait_for_healthy(release_name,
                                constants.NAMESPACE,
                                timeout=1200):
            host = mic.endpoint(release_name,
                                constants.NAMESPACE).split(':')[0]
        else:
            # log.warning(f'Deploy {release_name} timeout and ready to uninstall')
            # mic.uninstall(release_name, namespace=constants.NAMESPACE)
            raise BaseException(f'Milvus healthy timeout 1200s')

        try:
            c_name = cf.gen_unique_str(prefix)
            self.e2e_milvus_parallel(5, host, c_name)
            log.info('Milvus test before expand')

            # expand proxy replicas from 1 to 5
            mic.upgrade(release_name, {'spec.components.proxy.replicas': 5},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            self.e2e_milvus_parallel(5, host, c_name)
            log.info('Milvus test after expand')

            # expand proxy replicas from 5 to 2
            mic.upgrade(release_name, {'spec.components.proxy.replicas': 2},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            self.e2e_milvus_parallel(2, host, c_name)
            log.info('Milvus test after shrink')

        except Exception as e:
            log.error(str(e))
            fail_count += 1
            # raise Exception(str(e))

        finally:
            log.info(f'Test finished with {fail_count} fail request')
            assert fail_count <= 1
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE,
                         label_selector=label,
                         release_name=release_name)
            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #13
0
    def test_scale_query_node(self):
        """
        target: test scale queryNode
        method: 1.deploy milvus cluster with 1 queryNode
                2.prepare work (connect, create, insert, index and load)
                3.continuously search (daemon thread)
                4.expand queryNode from 2 to 5
                5.continuously insert new data (daemon thread)
                6.shrink queryNode from 5 to 3
        expected: Verify milvus remains healthy and search successfully during scale
        """
        release_name = "scale-query"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        query_config = {
            'metadata.namespace': constants.NAMESPACE,
            'spec.mode': 'cluster',
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.queryNode.replicas': 1,
            'spec.config.common.retentionDuration': 60
        }
        mic = MilvusOperator()
        mic.install(query_config)
        if mic.wait_for_healthy(release_name,
                                constants.NAMESPACE,
                                timeout=1800):
            host = mic.endpoint(release_name,
                                constants.NAMESPACE).split(':')[0]
        else:
            raise MilvusException(message=f'Milvus healthy timeout 1800s')

        try:
            # connect
            connections.add_connection(default={"host": host, "port": 19530})
            connections.connect(alias='default')

            # create
            c_name = cf.gen_unique_str("scale_query")
            # c_name = 'scale_query_DymS7kI4'
            collection_w = ApiCollectionWrapper()
            collection_w.init_collection(
                name=c_name,
                schema=cf.gen_default_collection_schema(),
                shards_num=2)

            # insert two segments
            for i in range(3):
                df = cf.gen_default_dataframe_data(nb)
                collection_w.insert(df)
                log.debug(collection_w.num_entities)

            # create index
            collection_w.create_index(ct.default_float_vec_field_name,
                                      default_index_params)
            assert collection_w.has_index()[0]
            assert collection_w.index()[0] == Index(
                collection_w.collection, ct.default_float_vec_field_name,
                default_index_params)

            # load
            collection_w.load()

            # scale queryNode to 5
            mic.upgrade(release_name,
                        {'spec.components.queryNode.replicas': 5},
                        constants.NAMESPACE)

            @counter
            def do_search():
                """ do search """
                search_res, is_succ = collection_w.search(
                    cf.gen_vectors(1, ct.default_dim),
                    ct.default_float_vec_field_name,
                    ct.default_search_params,
                    ct.default_limit,
                    check_task=CheckTasks.check_nothing)
                assert len(search_res) == 1
                return search_res, is_succ

            def loop_search():
                """ continuously search """
                while True:
                    do_search()

            threading.Thread(target=loop_search, args=(), daemon=True).start()

            # wait new QN running, continuously insert
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            @counter
            def do_insert():
                """ do insert """
                return collection_w.insert(cf.gen_default_dataframe_data(1000),
                                           check_task=CheckTasks.check_nothing)

            def loop_insert():
                """ loop insert """
                while True:
                    do_insert()

            threading.Thread(target=loop_insert, args=(), daemon=True).start()

            log.debug(collection_w.num_entities)
            time.sleep(20)
            log.debug("Expand querynode test finished")

            mic.upgrade(release_name,
                        {'spec.components.queryNode.replicas': 3},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            log.debug(collection_w.num_entities)
            time.sleep(60)
            scale_common.check_succ_rate(do_search)
            scale_common.check_succ_rate(do_insert)
            log.debug("Shrink querynode test finished")

        except Exception as e:
            raise Exception(str(e))

        finally:
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE,
                         label_selector=label,
                         release_name=release_name)
            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #14
0
    def test_scale_in_query_node_less_than_replicas(self):
        """
        target: test scale in cluster and querynode < replica
        method: 1.Deploy cluster with 3 querynodes
                2.Create and insert data, flush
                3.Load collection with 2 replica number
                4.Scale in querynode from 3 to 1 and query
                5.Scale out querynode from 1 back to 3
        expected: Verify search successfully after scale out
        """
        release_name = "scale-in-query"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        query_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.mode': 'cluster',
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.queryNode.replicas': 2,
            'spec.config.common.retentionDuration': 60
        }
        mic = MilvusOperator()
        mic.install(query_config)
        if mic.wait_for_healthy(release_name,
                                constants.NAMESPACE,
                                timeout=1800):
            host = mic.endpoint(release_name,
                                constants.NAMESPACE).split(':')[0]
        else:
            raise MilvusException(message=f'Milvus healthy timeout 1800s')
        try:
            # prepare collection
            connections.connect("scale-in", host=host, port=19530)
            utility_w = ApiUtilityWrapper()
            collection_w = ApiCollectionWrapper()
            collection_w.init_collection(
                name=cf.gen_unique_str("scale_in"),
                schema=cf.gen_default_collection_schema(),
                using="scale-in")
            collection_w.insert(cf.gen_default_dataframe_data())
            assert collection_w.num_entities == ct.default_nb

            # load multi replicas and search success
            collection_w.load(replica_number=2)
            search_res, is_succ = collection_w.search(
                cf.gen_vectors(1, ct.default_dim),
                ct.default_float_vec_field_name, ct.default_search_params,
                ct.default_limit)
            assert len(search_res[0].ids) == ct.default_limit
            log.info("Search successfully after load with 2 replicas")
            log.debug(collection_w.get_replicas()[0])
            log.debug(
                utility_w.get_query_segment_info(collection_w.name,
                                                 using="scale-in"))

            # scale in querynode from 2 to 1, less than replica number
            log.debug("Scale in querynode from 2 to 1")
            mic.upgrade(release_name,
                        {'spec.components.queryNode.replicas': 1},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            # search and not assure success
            collection_w.search(cf.gen_vectors(1, ct.default_dim),
                                ct.default_float_vec_field_name,
                                ct.default_search_params,
                                ct.default_limit,
                                check_task=CheckTasks.check_nothing)
            log.debug(
                collection_w.get_replicas(
                    check_task=CheckTasks.check_nothing)[0])

            # scale querynode from 1 back to 2
            mic.upgrade(release_name,
                        {'spec.components.queryNode.replicas': 2},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            # verify search success
            collection_w.search(cf.gen_vectors(1, ct.default_dim),
                                ct.default_float_vec_field_name,
                                ct.default_search_params, ct.default_limit)
            # Verify replica info is correct
            replicas = collection_w.get_replicas()[0]
            assert len(replicas.groups) == 2
            for group in replicas.groups:
                assert len(group.group_nodes) == 1
            # Verify loaded segment info is correct
            seg_info = utility_w.get_query_segment_info(collection_w.name,
                                                        using="scale-in")[0]
            num_entities = 0
            for seg in seg_info:
                assert len(seg.nodeIds) == 2
                num_entities += seg.num_rows
            assert num_entities == ct.default_nb

        except Exception as e:
            raise Exception(str(e))

        finally:
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE,
                         label_selector=label,
                         release_name=release_name)
            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #15
0
    def test_scale_query_node_replicas(self):
        """
        target: test scale out querynode when load multi replicas
        method: 1.Deploy cluster with 5 querynodes
                2.Create collection with 2 shards
                3.Insert 10 segments and flushed
                4.Load collection with 2 replicas
                5.Scale out querynode from 5 to 6 while search and insert growing data
        expected: Verify search succ rate is 100%
        """
        release_name = "scale-replica"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        query_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.mode': 'cluster',
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.queryNode.replicas': 5,
            'spec.config.common.retentionDuration': 60
        }
        mic = MilvusOperator()
        mic.install(query_config)
        if mic.wait_for_healthy(release_name,
                                constants.NAMESPACE,
                                timeout=1800):
            host = mic.endpoint(release_name,
                                constants.NAMESPACE).split(':')[0]
        else:
            raise MilvusException(message=f'Milvus healthy timeout 1800s')

        try:
            scale_querynode = random.choice([6, 7, 4, 3])
            connections.connect("scale-replica", host=host, port=19530)

            collection_w = ApiCollectionWrapper()
            collection_w.init_collection(
                name=cf.gen_unique_str("scale_out"),
                schema=cf.gen_default_collection_schema(),
                using='scale-replica',
                shards_num=3)

            # insert 10 sealed segments
            for i in range(5):
                df = cf.gen_default_dataframe_data(nb=nb, start=i * nb)
                collection_w.insert(df)
                assert collection_w.num_entities == (i + 1) * nb

            collection_w.load(replica_number=2)

            @counter
            def do_search():
                """ do search """
                search_res, is_succ = collection_w.search(
                    cf.gen_vectors(1, ct.default_dim),
                    ct.default_float_vec_field_name,
                    ct.default_search_params,
                    ct.default_limit,
                    check_task=CheckTasks.check_nothing)
                assert len(search_res) == 1
                return search_res, is_succ

            def loop_search():
                """ continuously search """
                while True:
                    do_search()

            threading.Thread(target=loop_search, args=(), daemon=True).start()

            # scale out
            mic.upgrade(
                release_name,
                {'spec.components.queryNode.replicas': scale_querynode},
                constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")
            log.debug("Scale out querynode success")

            time.sleep(100)
            scale_common.check_succ_rate(do_search)
            log.debug("Scale out test finished")

        except Exception as e:
            raise Exception(str(e))

        finally:
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE,
                         label_selector=label,
                         release_name=release_name)
            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #16
0
    def test_scale_data_node(self):
        """
        target: test scale dataNode
        method: 1.deploy milvus cluster with 2 dataNode
                2.create collection with shards_num=5
                3.continuously insert new data (daemon thread)
                4.expand dataNode from 2 to 5
                5.create new collection with shards_num=2
                6.continuously insert new collection new data (daemon thread)
                7.shrink dataNode from 5 to 3
        expected: Verify milvus remains healthy, Insert and flush successfully during scale
                  Average dataNode memory usage
        """
        release_name = "scale-data"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        fail_count = 0

        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.dataNode.replicas': 2,
            'spec.config.dataCoord.enableCompaction': True,
            'spec.config.dataCoord.enableGarbageCollection': True
        }
        mic = MilvusOperator()
        mic.install(data_config)
        if mic.wait_for_healthy(release_name,
                                constants.NAMESPACE,
                                timeout=1200):
            host = mic.endpoint(release_name,
                                constants.NAMESPACE).split(':')[0]
        else:
            # log.warning(f'Deploy {release_name} timeout and ready to uninstall')
            # mic.uninstall(release_name, namespace=constants.NAMESPACE)
            raise BaseException(f'Milvus healthy timeout 1200s')

        try:
            # connect
            connections.add_connection(default={"host": host, "port": 19530})
            connections.connect(alias='default')

            # create
            c_name = cf.gen_unique_str("scale_query")
            # c_name = 'scale_query_DymS7kI4'
            collection_w = ApiCollectionWrapper()
            collection_w.init_collection(
                name=c_name,
                schema=cf.gen_default_collection_schema(),
                shards_num=5)

            tmp_nb = 10000

            def do_insert():
                while True:
                    tmp_df = cf.gen_default_dataframe_data(tmp_nb)
                    collection_w.insert(tmp_df)
                    log.debug(collection_w.num_entities)

            t_insert = threading.Thread(target=do_insert, args=(), daemon=True)
            t_insert.start()

            # scale dataNode to 5
            mic.upgrade(release_name, {'spec.components.dataNode.replicas': 5},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")
            log.debug("Expand dataNode test finished")

            # create new collection and insert
            new_c_name = cf.gen_unique_str("scale_query")
            collection_w_new = ApiCollectionWrapper()
            collection_w_new.init_collection(
                name=new_c_name,
                schema=cf.gen_default_collection_schema(),
                shards_num=2)

            def do_new_insert():
                while True:
                    tmp_df = cf.gen_default_dataframe_data(tmp_nb)
                    collection_w_new.insert(tmp_df)
                    log.debug(collection_w_new.num_entities)

            t_insert_new = threading.Thread(target=do_new_insert,
                                            args=(),
                                            daemon=True)
            t_insert_new.start()

            # scale dataNode to 3
            mic.upgrade(release_name, {'spec.components.dataNode.replicas': 3},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            log.debug(collection_w.num_entities)
            time.sleep(300)
            log.debug("Shrink dataNode test finished")

        except Exception as e:
            log.error(str(e))
            fail_count += 1
            # raise Exception(str(e))

        finally:
            log.info(f'Test finished with {fail_count} fail request')
            assert fail_count <= 1
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE,
                         label_selector=label,
                         release_name=release_name)

            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #17
0
 def teardown_method(self):
     milvus_op = MilvusOperator()
     milvus_op.uninstall(self.release_name, namespace)
Пример #18
0
    def test_expand_index_node(self):
        """
        target: test expand indexNode from 1 to 2
        method: 1.deploy two indexNode
                2.create index with two indexNode
                3.expand indexNode from 1 to 2
                4.create index with one indexNode
        expected: The cost of one indexNode is about twice that of two indexNodes
        """
        release_name = "expand-index"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'
        init_replicas = 1
        expand_replicas = 2
        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'spec.mode': 'cluster',
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.indexNode.replicas': init_replicas,
            'spec.components.dataNode.replicas': 2,
            'spec.config.common.retentionDuration': 60
        }
        mic = MilvusOperator()
        mic.install(data_config)
        if mic.wait_for_healthy(release_name, constants.NAMESPACE, timeout=1800):
            host = mic.endpoint(release_name, constants.NAMESPACE).split(':')[0]
        else:
            # If deploy failed and want to uninsatll mic
            # log.warning(f'Deploy {release_name} timeout and ready to uninstall')
            # mic.uninstall(release_name, namespace=constants.NAMESPACE)
            raise MilvusException(message=f'Milvus healthy timeout 1800s')

        try:
            # connect
            connections.add_connection(default={"host": host, "port": 19530})
            connections.connect(alias='default')

            # create collection
            c_name = "index_scale_one"
            collection_w = ApiCollectionWrapper()
            collection_w.init_collection(name=c_name, schema=cf.gen_default_collection_schema())

            # insert data
            data = cf.gen_default_dataframe_data(nb)
            loop = 100
            for i in range(loop):
                collection_w.insert(data, timeout=60)
            assert collection_w.num_entities == nb * loop

            # create index
            # Note that the num of segments and the num of indexNode are related to indexing time
            start = datetime.datetime.now()
            collection_w.create_index(ct.default_float_vec_field_name, default_index_params)
            assert collection_w.has_index()[0]
            t0 = datetime.datetime.now() - start
            log.info(f'Create index on {init_replicas} indexNode cost t0: {t0}')

            # drop index
            collection_w.drop_index()
            assert not collection_w.has_index()[0]

            # expand indexNode
            mic.upgrade(release_name, {'spec.components.indexNode.replicas': expand_replicas}, constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE, f"app.kubernetes.io/instance={release_name}")

            # create index again
            start = datetime.datetime.now()
            collection_w.create_index(ct.default_float_vec_field_name, default_index_params)
            assert collection_w.has_index()[0]
            t1 = datetime.datetime.now() - start
            log.info(f'Create index on {expand_replicas} indexNode cost t1: {t1}')
            collection_w.drop_index()

            start = datetime.datetime.now()
            collection_w.create_index(ct.default_float_vec_field_name, default_index_params)
            assert collection_w.has_index()[0]
            t2 = datetime.datetime.now() - start
            log.info(f'Create index on {expand_replicas} indexNode cost t2: {t2}')

            log.debug(f't2 is {t2}, t0 is {t0}, t0/t2 is {t0 / t2}')
            # assert round(t0 / t2) == 2

        except Exception as e:
            raise Exception(str(e))

        finally:
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE, label_selector=label, release_name=release_name)
            mic.uninstall(release_name, namespace=constants.NAMESPACE)
Пример #19
0
    def test_scale_data_node(self):
        """
        target: test scale dataNode
        method: 1.deploy milvus cluster with 2 dataNode
                2.create collection with shards_num=5
                3.continuously insert new data (daemon thread)
                4.expand dataNode from 2 to 5
                5.create new collection with shards_num=2
                6.continuously insert new collection new data (daemon thread)
                7.shrink dataNode from 5 to 3
        expected: Verify milvus remains healthy, Insert and flush successfully during scale
                  Average dataNode memory usage
        """
        release_name = "scale-data"
        image_tag = get_latest_tag()
        image = f'{constants.IMAGE_REPOSITORY}:{image_tag}'

        data_config = {
            'metadata.namespace': constants.NAMESPACE,
            'spec.mode': 'cluster',
            'metadata.name': release_name,
            'spec.components.image': image,
            'spec.components.proxy.serviceType': 'LoadBalancer',
            'spec.components.dataNode.replicas': 2,
            'spec.config.common.retentionDuration': 60
        }
        mic = MilvusOperator()
        mic.install(data_config)
        if mic.wait_for_healthy(release_name,
                                constants.NAMESPACE,
                                timeout=1800):
            host = mic.endpoint(release_name,
                                constants.NAMESPACE).split(':')[0]
        else:
            raise MilvusException(message=f'Milvus healthy timeout 1800s')

        try:
            # connect
            connections.add_connection(default={"host": host, "port": 19530})
            connections.connect(alias='default')

            # create
            c_name = cf.gen_unique_str("scale_data")
            collection_w = ApiCollectionWrapper()
            collection_w.init_collection(
                name=c_name,
                schema=cf.gen_default_collection_schema(),
                shards_num=4)

            tmp_nb = 10000

            @counter
            def do_insert():
                """ do insert and flush """
                insert_res, is_succ = collection_w.insert(
                    cf.gen_default_dataframe_data(tmp_nb))
                log.debug(collection_w.num_entities)
                return insert_res, is_succ

            def loop_insert():
                """ loop do insert """
                while True:
                    do_insert()

            threading.Thread(target=loop_insert, args=(), daemon=True).start()

            # scale dataNode to 5
            mic.upgrade(release_name, {'spec.components.dataNode.replicas': 5},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")
            log.debug("Expand dataNode test finished")

            # create new collection and insert
            new_c_name = cf.gen_unique_str("scale_data")
            collection_w_new = ApiCollectionWrapper()
            collection_w_new.init_collection(
                name=new_c_name,
                schema=cf.gen_default_collection_schema(),
                shards_num=3)

            @counter
            def do_new_insert():
                """ do new insert """
                insert_res, is_succ = collection_w_new.insert(
                    cf.gen_default_dataframe_data(tmp_nb))
                log.debug(collection_w_new.num_entities)
                return insert_res, is_succ

            def loop_new_insert():
                """ loop new insert """
                while True:
                    do_new_insert()

            threading.Thread(target=loop_new_insert, args=(),
                             daemon=True).start()

            # scale dataNode to 3
            mic.upgrade(release_name, {'spec.components.dataNode.replicas': 3},
                        constants.NAMESPACE)
            mic.wait_for_healthy(release_name, constants.NAMESPACE)
            wait_pods_ready(constants.NAMESPACE,
                            f"app.kubernetes.io/instance={release_name}")

            log.debug(collection_w.num_entities)
            time.sleep(300)
            scale_common.check_succ_rate(do_insert)
            scale_common.check_succ_rate(do_new_insert)
            log.debug("Shrink dataNode test finished")

        except Exception as e:
            log.error(str(e))
            # raise Exception(str(e))

        finally:
            label = f"app.kubernetes.io/instance={release_name}"
            log.info('Start to export milvus pod logs')
            read_pod_log(namespace=constants.NAMESPACE,
                         label_selector=label,
                         release_name=release_name)

            mic.uninstall(release_name, namespace=constants.NAMESPACE)