Пример #1
0
 def run(self, test):
     p = self.get_distance_matrix(test)
     p *= -1.0  # no argmin supported yet
     idx = cp.dev_tensor_uint(test.shape[0])
     cp.reduce_to_row(idx, p, cp.reduce_functor.ARGMAX)
     hidx = idx.np.reshape(idx.shape[0])
     return self.data_l.reshape(self.data.shape[0])[hidx]
Пример #2
0
 def run(self,test):
     p = self.get_distance_matrix(test)
     p *= -1.                # no argmin supported yet
     idx = cp.dev_tensor_uint(test.shape[0])
     cp.reduce_to_row(idx, p, cp.reduce_functor.ARGMAX)
     hidx  = idx.np.reshape(idx.shape[0])
     return self.data_l.reshape(self.data.shape[0])[hidx]
Пример #3
0
def kmeans(dataset, num_clusters, iters):
    # initialize clusters randomly
    rand_indices = np.random.randint(0, dataset.shape[0], num_clusters)
    clusters = dataset[rand_indices,:]

    # push initial clusters and dataset to device
    dataset_dev = cp.dev_tensor_float(dataset)
    clusters_dev = cp.dev_tensor_float(clusters)

    # allocate matrices for calculations (so we don't need to allocate in loop)
    dists = cp.dev_tensor_float([dataset_dev.shape[0], num_clusters])
    nearest = cp.dev_tensor_uint(dataset_dev.shape[0])

    # main loop
    for i in xrange(iters):
        # compute pairwise distances
        cp.pdist2(dists, dataset_dev, clusters_dev)
        # find closest cluster
        cp.reduce_to_col(nearest, dists, cp.reduce_functor.ARGMIN)
        # update cluster centers
        # (this is a special purpose function for kmeans)
        cp.compute_clusters(clusters_dev, dataset_dev, nearest)
    return [clusters_dev.np, nearest.np]