Пример #1
0
    def segment_motion(self):
        min_area = 100
        size = cv.GetSize(self.mask)  # get current frame size
        temp = cv.CloneImage(self.mask)
        cv.CalcMotionGradient(self.mhi, temp, self.orient, self.MAX_TIME_DELTA,
                              self.MIN_TIME_DELTA, 3)
        #cv.ShowImage("orient", self.orient);
        if not self.storage:
            self.storage = cv.CreateMemStorage(0)
        seq = cv.SegmentMotion(self.mhi, self.segmask, self.storage,
                               self.timestamp, self.MAX_TIME_DELTA)
        #cv.ShowImage("segmask", self.segmask)

        max = 0
        max_idx = -1
        for i in range(len(seq)):
            (area, value, comp_rect) = seq[i]
            if area > max:
                max = area
                max_idx = i
        if max_idx == -1:
            cv.Zero(self.mask)
            return

        (area, value, comp_rect) = seq[max_idx]
        if (area < 100):
            cv.Zero(self.mask)
            return

        cv.Zero(self.mask)
        cv.Rectangle(
            self.mask, (comp_rect[0], comp_rect[1]),
            (comp_rect[0] + comp_rect[2], comp_rect[1] + comp_rect[3]),
            (255, 255, 255), cv.CV_FILLED)
Пример #2
0
def update_mhi(img, dst, diff_threshold):
    global last
    global mhi
    global storage
    global mask
    global orient
    global segmask
    timestamp = time.clock() / CLOCKS_PER_SEC # get current time in seconds
    size = cv.GetSize(img) # get current frame size
    idx1 = last
    if not mhi or cv.GetSize(mhi) != size:
        for i in range(N):
            buf[i] = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
            cv.Zero(buf[i])
        mhi = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        cv.Zero(mhi) # clear MHI at the beginning
        orient = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        segmask = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
        mask = cv.CreateImage(size,cv. IPL_DEPTH_8U, 1)
    
    cv.CvtColor(img, buf[last], cv.CV_BGR2GRAY) # convert frame to grayscale
    idx2 = (last + 1) % N # index of (last - (N-1))th frame
    last = idx2
    silh = buf[idx2]
    cv.AbsDiff(buf[idx1], buf[idx2], silh) # get difference between frames
    cv.Threshold(silh, silh, diff_threshold, 1, cv.CV_THRESH_BINARY) # and threshold it
    cv.UpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION) # update MHI
    cv.CvtScale(mhi, mask, 255./MHI_DURATION,
                (MHI_DURATION - timestamp)*255./MHI_DURATION)
    cv.Zero(dst)
    cv.Merge(mask, None, None, None, dst)
    cv.CalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3)
    if not storage:
        storage = cv.CreateMemStorage(0)
    seq = cv.SegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA)
    for (area, value, comp_rect) in seq:
        if comp_rect[2] + comp_rect[3] > 100: # reject very small components
            color = cv.CV_RGB(255, 0,0)
            silh_roi = cv.GetSubRect(silh, comp_rect)
            mhi_roi = cv.GetSubRect(mhi, comp_rect)
            orient_roi = cv.GetSubRect(orient, comp_rect)
            mask_roi = cv.GetSubRect(mask, comp_rect)
            angle = 360 - cv.CalcGlobalOrientation(orient_roi, mask_roi, mhi_roi, timestamp, MHI_DURATION)

            count = cv.Norm(silh_roi, None, cv.CV_L1, None) # calculate number of points within silhouette ROI
            if count < (comp_rect[2] * comp_rect[3] * 0.05):
                continue

            magnitude = 30.
            center = ((comp_rect[0] + comp_rect[2] / 2), (comp_rect[1] + comp_rect[3] / 2))
            cv.Circle(dst, center, cv.Round(magnitude*1.2), color, 3, cv.CV_AA, 0)
            cv.Line(dst,
                    center,
                    (cv.Round(center[0] + magnitude * cos(angle * cv.CV_PI / 180)),
                     cv.Round(center[1] - magnitude * sin(angle * cv.CV_PI / 180))),
                    color,
                    3,
                    cv.CV_AA,
                    0)
Пример #3
0
    def process_motion(self,img):
        center = (-1, -1)
        # a lot of stuff from this section was taken from the code motempl.py, 
        #  openCV's python sample code
        timestamp = time.clock() / self.clocks_per_sec # get current time in seconds
        idx1 = self.last
        cv.CvtColor(img, self.buf[self.last], cv.CV_BGR2GRAY) # convert frame to grayscale
        idx2 = (self.last + 1) % self.n_frames 
        self.last = idx2
        silh = self.buf[idx2]
        cv.AbsDiff(self.buf[idx1], self.buf[idx2], silh) # get difference between frames
        cv.Threshold(silh, silh, 30, 1, cv.CV_THRESH_BINARY) # and threshold it
        cv.UpdateMotionHistory(silh, self.mhi, timestamp, self.mhi_duration) # update MHI
        cv.ConvertScale(self.mhi, self.mask, 255./self.mhi_duration, 
                        (self.mhi_duration - timestamp)*255./self.mhi_duration)
        cv.SetZero(img)
        cv.Merge(self.mask, None, None, None, img)
        cv.CalcMotionGradient(self.mhi, self.mask, self.orient, self.max_time_delta, self.min_time_delta, 3)
        seq = cv.SegmentMotion(self.mhi, self.segmask, self.storage, timestamp, self.max_time_delta)
        inc = 0
        a_max = 0
        max_rect = -1
    
        # there are lots of things moving around
        #  in this case just find find the biggest change on the image
        for (area, value, comp_rect) in seq:
            if comp_rect[2] + comp_rect[3] > 60: # reject small changes
                if area > a_max: 
                    a_max = area
                    max_rect = inc
            inc += 1

        # found it, now just do some processing on the area.
        if max_rect != -1:
            (area, value, comp_rect) = seq[max_rect]
            color = cv.CV_RGB(255, 0,0)
            silh_roi = cv.GetSubRect(silh, comp_rect)
            # calculate number of points within silhouette ROI
            count = cv.Norm(silh_roi, None, cv.CV_L1, None)

            # this rectangle contains the overall motion ROI
            cv.Rectangle(self.motion, (comp_rect[0], comp_rect[1]), 
                         (comp_rect[0] + comp_rect[2], 
                          comp_rect[1] + comp_rect[3]), (0,0,255), 1)

            # the goal is to report back a center of movement contained in a rectangle
            # adjust the height based on the number generated by the slider bar
            h = int(comp_rect[1] + (comp_rect[3] * (float(self.height_value) / 100)))
            # then calculate the center
            center = ((comp_rect[0] + comp_rect[2] / 2), h)

        return center
def processFrame():
    # Declare as globals since we are assigning to them now
    global capture
    global camera_index
    global frame_grey
    global prev_frame
    global prev_frame_grey
    global motionMask
    global mhi
    global orientation
    global prevFrameIndex
    diff_threshold = 50

    # Capture current frame
    frame = cv.QueryFrame(capture)

    # Create frame buffer and initial all image variables needed for the motion history algorithm
    if not mhi:
        for i in range(N):
            buffer[i] = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
            cv.Zero(buffer[i])
        mhi = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_32F, 1)
        cv.Zero(mhi)
        orientation = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_32F, 1)

    # Erode the frame 3 times to remove noise
    #cv.Erode(frame, frame, None, 3)

    # Convert frame to greyscale and store it in the buffer
    cv.CvtColor(frame, buffer[prevFrameIndex], cv.CV_RGB2GRAY)

    # Iterate the indexes of the image buffer
    index1 = prevFrameIndex
    index2 = (prevFrameIndex + 1) % N  # Finds the next index in the buffer
    prevFrameIndex = index2
    motionMask = buffer[index2]

    # Find the motion mask by finding the difference between the current and previous frames
    cv.AbsDiff(buffer[index1], buffer[index2], motionMask)

    # Convert the motion mask to a binary image
    cv.Threshold(motionMask, motionMask, diff_threshold, 1,
                 cv.CV_THRESH_BINARY)

    # Produce motion history image
    timeStamp = time.clock() / CLOCKS_PER_SEC
    cv.UpdateMotionHistory(motionMask, mhi, timeStamp, MHI_DURATION)

    # Copy new motion mask onto the motion history image and scale it
    cv.ConvertScale(mhi, motionMask, 255. / MHI_DURATION,
                    (MHI_DURATION - timeStamp) * 255. / MHI_DURATION)

    # Calculate the motion gradient and find the direction of motion
    tempMask = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
    cv.Merge(motionMask, None, None, None, tempMask)
    cv.CalcMotionGradient(mhi, tempMask, orientation, 0.5, 0.05, 3)
    angle = 360 - cv.CalcGlobalOrientation(orientation, tempMask, mhi,
                                           timeStamp, MHI_DURATION)
    #print angle

    # Contour detection method
    # Draw motion box and angle line
    cv.Dilate(tempMask, tempMask, None, 1)
    storage = cv.CreateMemStorage(0)
    contour = cv.FindContours(tempMask, storage, cv.CV_RETR_EXTERNAL,
                              cv.CV_CHAIN_APPROX_SIMPLE)
    cv.DrawContours(
        motionMask, contour, cv.RGB(0, 0, 255), cv.RGB(0, 255, 0),
        1)  # Change first parameter to motionMask to get mhi and contour

    # Single outermost contour
    """
    try:
        bound_rect1 = contour[0]
        bound_rect2 = contour[1]
        pt1 = (bound_rect1[0], bound_rect1[1])
        pt2 = (bound_rect1[0] + bound_rect2[0], bound_rect1[1] + bound_rect2[1])
        # draw
        cv.Rectangle(motionMask, pt1, pt2, cv.CV_RGB(0,0,255), 1)
    except:
        continue
    """

    # Lots of contours
    """
    while contour:
        bound_rect = cv.BoundingRect(list(contour))
        contour = contour.h_next()
        pt1 = (bound_rect[0], bound_rect[1])
        pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3])

        # draw
        cv.Rectangle(motionMask, pt1, pt2, cv.CV_RGB(0,0,255), 1)
    """
    # Combine motion mask and contours
    output = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
    #cv.Merge(motionMask, None, None, None, tempMask)

    # Display image
    cv.ShowImage("CS201 - Homework 3 - Tyler Boraski", motionMask)

    # If wrong camera index is initialized, press "n" to cycle through camera indexes.
    c = cv.WaitKey(10)
    if c == "n":
        camera_index += 1  # Try the next camera index
        capture = cv.CaptureFromCAM(camera_index)
        if not capture:  # If the next camera index didn't work, reset to 0.
            camera_index = 0
            capture = cv.CaptureFromCAM(camera_index)

    # If "esc" is pressed the program will end
    esc = cv.WaitKey(7) % 0x100
    if esc == 27:
        quit()