Пример #1
0
class ImageCbDetectorNode:
  def __init__(self):
    self.display = rospy.get_param('~display', True)
    self.corners_x = rospy.get_param('~corners_x', 5)
    self.corners_y = rospy.get_param('~corners_y', 5)
    self.spacing_x = rospy.get_param('~spacing_x', None)
    self.spacing_y = rospy.get_param('~spacing_y', None)
    self.width_scaling = rospy.get_param('~width_scaling', 1)
    self.height_scaling = rospy.get_param('~height_scaling', 1)

    self.im_cb_detector = ImageCbDetector(self.display,self.corners_x, self.corners_y, self.spacing_x, 
        self.spacing_y, self.width_scaling, self.height_scaling)

    self.image_sub = rospy.Subscriber("~image", Image, self.callback)
    self.cb_pub = rospy.Publisher("~checkerboard", Checkerboard)
    self.bridge = CvBridge()

  def callback(self, ros_image):
    #we need to convert the ros image to an opencv image
    try:
      image = self.bridge.imgmsg_to_cv(ros_image, "mono8")
    except CvBridgeError, e:
      rospy.logerror("Error importing image %s" % e)
      return

    corners, model = self.im_cb_detector.detect(image)
    if corners:
        cb = Checkerboard()
        cb.header = ros_image.header
        cb.num_x = self.corners_x
        cb.num_y = self.corners_y
        for i in range(self.corners_x * self.corners_y):
            cb.points.append(Point(cv.GetReal2D(corners,0,i),cv.GetReal2D(corners,1,i),0))
            if model:
                cb.model.append(Point(cv.GetReal2D(model,0,i),cv.GetReal2D(model,1,i),cv.GetReal2D(model,2,i)))
        self.cb_pub.publish(cb)
Пример #2
0
def normalizeImage(frame):
    redChannel = cv.CreateImage(cv.GetSize(frame), 8, 1)
    greenChannel = cv.CreateImage(cv.GetSize(frame), 8, 1)
    blueChannel = cv.CreateImage(cv.GetSize(frame), 8, 1)
    redAvg = cv.CreateImage(cv.GetSize(frame), 8, 1)
    greenAvg = cv.CreateImage(cv.GetSize(frame), 8, 1)
    blueAvg = cv.CreateImage(cv.GetSize(frame), 8, 1)
    resImg = cv.CreateImage(cv.GetSize(frame), 8, 3)
    cv.Split(frame, blueChannel, greenChannel, redChannel, None)

    hsvImg = cv.CreateImage(cv.GetSize(frame), 8, 3)
    cv.CvtColor(frame, hsvImg, cv.CV_BGR2HSV)
    hueChannel = cv.CreateImage(cv.GetSize(frame), 8, 1)
    satChannel = cv.CreateImage(cv.GetSize(frame), 8, 1)
    valChannel = cv.CreateImage(cv.GetSize(frame), 8, 1)
    cv.Split(hsvImg, hueChannel, satChannel, valChannel, None)

    for y in range(0, frame.height):
        for x in range(0, frame.width):
            redValue = cv.GetReal2D(redChannel, y, x)
            greenValue = cv.GetReal2D(greenChannel, y, x)
            blueValue = cv.GetReal2D(blueChannel, y, x)
            sum = redValue + greenValue + blueValue + 0.0
            if (sum < 1.0):
                sum = 1.0
            cv.SetReal2D(redAvg, y, x, redValue / sum * 255)
            cv.SetReal2D(greenAvg, y, x, greenValue / sum * 255)
            cv.SetReal2D(blueAvg, y, x, blueValue / sum * 255)
    cv.Merge(blueAvg, greenAvg, redAvg, None, resImg)
    del redChannel
    del greenChannel
    del blueChannel
    del redAvg
    del greenAvg
    del blueAvg
    return (resImg)
Пример #3
0
def saturate(frame):
    cv.CvtColor(frame, frame, cv.CV_BGR2HSV)
    hue = cv.CreateImage(cv.GetSize(frame), 8, 1)
    sat = cv.CreateImage(cv.GetSize(frame), 8, 1)
    val = cv.CreateImage(cv.GetSize(frame), 8, 1)
    cv.Split(frame, hue, sat, val, None)
    for y in range(0, frame.height):
        for x in range(0, frame.width):
            saturation = cv.GetReal2D(sat, y, x)
            if (saturation < 200):
                saturation = saturation + 50
                cv.SetReal2D(sat, y, x, saturation)
    cv.Merge(hue, sat, val, None, frame)
    del hue
    del sat
    del val
    cv.CvtColor(frame, frame, cv.CV_HSV2BGR)
    return (frame)
Пример #4
0
    velx = cv.CreateMat(rows, cols, cv.CV_32FC1)
    vely = cv.CreateMat(rows, cols, cv.CV_32FC1)

    cv.SetZero(velx)
    cv.SetZero(vely)

    cv.CalcOpticalFlowHS(src_im1, src_im2, 0, velx, vely, 100.0,
                         (cv.CV_TERMCRIT_ITER | cv.CV_TERMCRIT_EPS, 64, 0.01))
    #cv.CalcOpticalFlowLK(src_im1, src_im2, (10,10), velx, vely)
    print velx
    print vely

    for i in range(0, (cols - 1), 5):
        for j in range(0, (rows - 1), 5):
            dx = cv.GetReal2D(velx, j, i)
            dy = cv.GetReal2D(vely, j, i)
            cv.Line(dst_im1, (i, j), (int(i + dx), int(j + dy)),
                    cv.CV_RGB(255, 0, 0), 1, cv.CV_AA, 0)

    cv.NamedWindow("w", cv.CV_WINDOW_AUTOSIZE)
    cv.ShowImage("w", dst_im1)
    cv.WaitKey()

##using Lucas Kanade
if args.algorithm == 'LK':
    dst_img = cv.LoadImage(args.im2, cv.CV_LOAD_IMAGE_COLOR)
    eign_img = cv.CreateImage(cv.GetSize(src_im1), cv.IPL_DEPTH_32F, 1)
    temp_img = cv.CreateImage(cv.GetSize(src_im1), cv.IPL_DEPTH_32F, 1)
    features = cv.GoodFeaturesToTrack(src_im1, eign_img, temp_img, 5000, 0.1,
                                      10, None, True)
Пример #5
0
cols = inputImageFirst.width
rows = inputImageFirst.height
print cols, rows

velx = cv.CreateMat(rows, cols, cv.CV_32FC1)
vely = cv.CreateMat(rows, cols, cv.CV_32FC1)
cv.SetZero(velx)
cv.SetZero(vely)

cv.CalcOpticalFlowBM(inputImageFirst, inputImageSecond, (1, 1), (1, 1), (1, 1),
                     0, velx, vely)
f = open('./F/0.5/shuibo_05_BM(x1,y1,x1,y2).txt', 'w')  #将光流保存到txt文件中
count = 0
for i in range(0, cols, FLOWSKIP):
    for j in range(0, rows, FLOWSKIP):
        dx = int(cv.GetReal2D(velx, j, i))
        dy = int(cv.GetReal2D(vely, j, i))
        cv.Line(desImageHS, (i, j), (i + dx, j + dy), (0, 0, 255), 1, cv.CV_AA,
                0)
        f.writelines(
            [str(i), ' ',
             str(j), ' ',
             str(i + dx), ' ',
             str(j + dy), '\n'])
        # count+=1
        # print count
f.close()

cv.SaveImage("resultHS.png", desImageHS)

cv.NamedWindow("Optical flow HS")
Пример #6
0
    def find_checkerboard_service(self, req):
        poses = []
        min_x = self.ros_image.width
        min_y = self.ros_image.height
        max_x = 0
        max_y = 0
        for i in range(10):
            rospy.sleep(0.5)

            #copy the image over
            with self.mutex:
                image = self.ros_image

            result = self.find_checkerboard_pose(image, req.corners_x,
                                                 req.corners_y, req.spacing_x,
                                                 req.spacing_y,
                                                 self.width_scaling,
                                                 self.height_scaling)
            if result is None:
                rospy.logerr("Couldn't find a checkerboard")
                continue

            p, corners = result
            poses.append(p)
            for j in range(corners.cols):
                x = cv.GetReal2D(corners, 0, j)
                y = cv.GetReal2D(corners, 1, j)
                min_x = min(min_x, x)
                max_x = max(max_x, x)
                min_y = min(min_y, y)
                max_y = max(max_y, y)

        # convert all poses to twists
        twists = []
        for p in poses:
            twists.append(
                PyKDL.diff(PyKDL.Frame.Identity(), posemath.fromMsg(p.pose)))

        # get average twist
        twist_res = PyKDL.Twist()
        PyKDL.SetToZero(twist_res)
        for t in twists:
            for i in range(3):
                twist_res.vel[i] += t.vel[i] / len(poses)
                twist_res.rot[i] += t.rot[i] / len(poses)

        # get noise
        noise_rot = 0
        noise_vel = 0
        for t in twists:
            n_vel = (t.vel - twist_res.vel).Norm()
            n_rot = (t.rot - twist_res.rot).Norm()
            if n_vel > noise_vel:
                noise_vel = n_vel
            if n_rot > noise_rot:
                noise_rot = n_rot

        # set service resul
        pose_res = PyKDL.addDelta(PyKDL.Frame.Identity(), twist_res, 1.0)
        pose_msg = PoseStamped()
        pose_msg.header = poses[0].header
        pose_msg.pose = posemath.toMsg(pose_res)
        return GetCheckerboardPoseResponse(pose_msg, min_x, max_x, min_y,
                                           max_y, noise_vel, noise_rot)
Пример #7
0
def cut(disparity, image, threshold):
 for i in range(0, image.height):
  for j in range(0, image.width):
   # keep closer object
   if cv.GetReal2D(disparity,i,j) > threshold:
    cv.Set2D(disparity,i,j,cv.Get2D(image,i,j))