Пример #1
0
def simplest_color_balance(image, s1=0, s2=0, mask=None):
    #tick = time.time()
    UMAX = 255
    copy = image.copy()
    layers = cv2.split(copy)
    for i, layer in enumerate(layers):
        hist = cv2.calcHist([layer], [0], mask, [UMAX + 1], [0, UMAX])
        cumsum = hist.cumsum()
        size = cumsum[-1]
        lb = size * s1 / 100.0
        ub = size * (1 - s2 / 100.0)
        # reinit borders
        left = bisect.bisect_left(cumsum, lb)
        right = bisect.bisect_right(cumsum, ub)
        if (right - left) <= 0:
            left = UMAX / 2 - 1
            right = UMAX / 2
        #print left, right
        # replacing values
        if left != 0:
            left_mask = cv2.inRange(layer, np.array(0), np.array(left))
            cv.Set(cv.fromarray(layer), left, cv.fromarray(left_mask))
        if right != UMAX:
            right_mask = cv2.inRange(layer, np.array(right), np.array(UMAX))
            cv.Set(cv.fromarray(layer), right, cv.fromarray(right_mask))
        layers[i] = layer
    layers = map(lambda x: cv2.normalize(x, x, 0, UMAX, cv2.NORM_MINMAX),
                 layers)
    copy = cv2.merge(layers)
    #cv2.imshow('filter', copy)
    #tock = time.time()
    #print tock - tick
    return copy
Пример #2
0
def rangeGUI():
    """ creates and displays a GUI for the range finder data
        Ranges window: shows range finder values as red lines
        coming from the center of the range finder
        HoughLines window: shows the result of using a Hough
        transformation on image containing the range values as points.
    """
    global D

    init_GUI()  # initialize images and windows

    D.dangerList = []  # Set up the danger point list

    # main loop
    while rospy.is_shutdown() == False:

        # loop through every angle
        for angle in range(REV):
            magnitude = MAG_SCALE * D.ranges[angle]
            x = int(CENTER + magnitude * cos(pi / 180 * (angle + ANGLE_OFFSET))
                    )  # find x and y coordinates based on the angle
            y = int(CENTER - magnitude *
                    sin(pi / 180 *
                        (angle + ANGLE_OFFSET)))  # and the length of the line

            # put the danger points into the list
            if x > CENTER - 30 and x < CENTER + 30 and y < CENTER - 30 and y > CENTER - 90:
                D.dangerList.append((x, y))

            if 0 < magnitude < MAX_MAG:  # if data is within "good data" range
                # add line to the ranges image
                cv.Line(D.image, (CENTER, CENTER), (x, y), cv.RGB(255, 0, 0))
                # add dot to image being used in Hough transformation
                cv.Line(D.hough, (x, y), (x, y), cv.RGB(255, 0, 0))

        # wait and check for quit request
        key_code = cv.WaitKey(1) & 255
        key_press = chr(key_code)
        if key_code == 27 or key_press == 'q':  # if ESC or 'q' was pressed
            rospy.signal_shutdown("Quitting...")

        # find walls and add to image using Hough transformation
        findHoughLines()

        # show image with range finder data and calculated walls
        cv.ShowImage("Ranges", D.image)

        # show image used in Hough transformation if option is selected
        if SHOW_HOUGH:
            cv.ShowImage("HoughLines", D.color_dst)

        # clear the images for next loop
        cv.Set(D.image, cv.RGB(0, 0, 0))
        cv.Set(D.hough, cv.RGB(0, 0, 0))

        # clear the danger list for next loop
        D.dangerList = []

    D.tank(0, 0)  # stops the robot
    print "Quitting..."
Пример #3
0
    def _computeBGDiff(self):
        self._flow.update( self._imageBuffer.getLast() )
        
        n = len(self._imageBuffer)        
        prev_im = self._imageBuffer[0]
        forward = None
        for i in range(0,n/2):
            if forward == None:
                forward = self._imageBuffer[i].to_next
            else:
                forward = forward * self._imageBuffer[i].to_next
                
        w,h = size = prev_im.size
        mask = cv.CreateImage(size,cv.IPL_DEPTH_8U,1)
        cv.Set(mask,0)
        interior = cv.GetSubRect(mask, pv.Rect(2,2,w-4,h-4).asOpenCV()) 
        cv.Set(interior,255)
        mask = pv.Image(mask)

        prev_im = forward(prev_im)
        prev_mask = forward(mask)
        

        next_im = self._imageBuffer[n-1]
        back = None
        for i in range(n-1,n/2,-1):
            if back == None:
                back = self._imageBuffer[i].to_prev
            else:
                back = back * self._imageBuffer[i].to_prev
        
        next_im = back(next_im)
        next_mask = back(mask)
        
        curr_im = self._imageBuffer[n/2]

                
        prevImg = prev_im.asMatrix2D()
        curImg  = curr_im.asMatrix2D()
        nextImg = next_im.asMatrix2D()
        prevMask = prev_mask.asMatrix2D()
        nextMask = next_mask.asMatrix2D()

        # Compute transformed images
        delta1 = sp.absolute(curImg - prevImg)   #frame diff 1
        delta2 = sp.absolute(nextImg - curImg)   #frame diff 2
        
        delta1 = sp.minimum(delta1,prevMask)
        delta2 = sp.minimum(delta2,nextMask)
        
        #use element-wise minimum of the two difference images, which is what
        # gets compared to threshold to yield foreground mask
        return sp.minimum(delta1, delta2)
Пример #4
0
def add_alpha_channel(bgr, alpha_val):
    w, h = cv.GetSize(bgr)
    bgra = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 4)
    alpha = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 1)
    chan1 = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 1)
    chan2 = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 1)
    chan3 = cv.CreateImage((w, h), cv.IPL_DEPTH_8U, 1)
    [cv.Set(c, 0) for c in [chan1, chan2, chan3, bgra, alpha]]

    cv.Split(bgr, chan1, chan2, chan3, None)
    cv.Set(alpha, (alpha_val))
    cv.Merge(chan1, chan2, chan3, alpha, bgra)
    return bgra
Пример #5
0
    def __init__(self, img):
        self.img = cv.fromarray(img)
        self.width = self.img.cols
        self.height = self.img.rows
        self.cannyImg = cv.CreateMat(self.height, self.width, cv.CV_8UC1)
        self.outputImg = cv.CreateMat(self.height, self.width, cv.CV_8UC3)
        self.integralImg = cv.CreateMat(self.height + 1, self.width + 1,
                                        cv.CV_32FC1)
        self.calculatedImg = cv.CreateMat(self.height, self.width, cv.CV_8UC1)

        cv.Canny(self.img, self.cannyImg, 40, 100)
        cv.Integral(self.cannyImg, self.integralImg)
        cv.Set(self.calculatedImg, 0)
        cv.Set(self.outputImg, 0)
Пример #6
0
def measure(im, blur, noise=None, debug=False):
    focus_points = blur[0]
    #is_noisy = noise[2]

    size = cv.GetSize(im)
    npixels = size[0] * size[1]
    
    #if focused_regions is None:
    #    focused_regions = image.new_from(im)
    #    cv.Set(focused_regions, 0)
    #    groups = form_groups(focus_points,
    #        estimated_size=min(max(int(len(npixels) / 1000), 2), 15))
    #    #groups = form_groups(points, threshold=max(cv.GetSize(im))/16)
    #    #print 'groups', len(groups)
    #    draw_groups(groups, focused_regions)
    
    im2 = cv.CloneImage(im)
    g = Grid(cv.GetSize(im2))
    if debug:
        image.show(g.draw(im2), "Image with Grid + ROI")
    
    roi = image.new_from(im, nChannels=1)
    cv.Set(roi, 0)
    #g.draw_lines(roi, thickness=int(max(min((size[0] + size[1]) * 1/100.0, 255), 1)))
    g.draw_regions(roi)
    area = cv.Sum(roi)[0]
    
    (_, face_rects), face_score = faces.measure(im)
    face_block = image.new_from(im, nChannels=1)
    cv.Set(face_block, 0)
    for r in face_rects:
        r.draw(face_block, color=cv.RGB(255,255,255), thickness=cv.CV_FILLED)
    
    if debug:
        face_roi = cv.CloneImage(im)
        cv.Set(face_roi, 0, image.invert(roi))
        cv.Set(face_roi, 0, image.invert(image.threshold(face_block, threshold=1)))
        
        image.show(face_block, "Faces in Binary")
        image.show(g.draw(face_roi), "Face + ROI")
        
    return (im, (
         measure_focused_roi(im, roi, area, focus_points, debug),
         #measure_color_roi(im, roi, area, focus_points, debug),
         measure_contrast(im, debug),
         measure_saturation(im, debug),
         faces.measure(im, debug)[1],
    ))
Пример #7
0
def get_canny_img(img):
    size = sizeOf(img)
    plate = cv.CreateImage(size, 8, 1)
    cv.Set(plate, 255)
    for k in (50, 100,150,200,250):
#    k=100
        edges = cv.CreateImage(size, 8, 1)
        cv.Canny(img, edges, k-20, k)
#                show_image(edges)
        if k >= 100:
            cv.Dilate(edges,edges)
        else:
            k+=50
#        cv.Erode(edges,edges)
        cv.Set(plate, 255 - k, edges)
    return plate
Пример #8
0
 def gen_image(self, size, color_value):
     color = self.parse_hex_color(color_value)
     if not color:
         raise ValueError('Color %s is not valid.' % color_value)
     img0 = cv.CreateImage(size, 8, 3)
     cv.Set(img0, color)
     return img0
Пример #9
0
    def test_encode_decode_cv1(self):
        import cv
        fmts = [
            cv.IPL_DEPTH_8U, cv.IPL_DEPTH_8S, cv.IPL_DEPTH_16U,
            cv.IPL_DEPTH_16S, cv.IPL_DEPTH_32S, cv.IPL_DEPTH_32F,
            cv.IPL_DEPTH_64F
        ]

        cvb_en = CvBridge()
        cvb_de = CvBridge()

        for w in range(100, 800, 100):
            for h in range(100, 800, 100):
                for f in fmts:
                    for channels in (1, 2, 3, 4):
                        original = cv.CreateImage((w, h), f, channels)
                        cv.Set(original, (1, 2, 3, 4))
                        rosmsg = cvb_en.cv_to_imgmsg(original)
                        newimg = cvb_de.imgmsg_to_cv(rosmsg)
                        self.assert_(
                            cv.GetElemType(original) == cv.GetElemType(newimg))
                        self.assert_(
                            cv.GetSize(original) == cv.GetSize(newimg))
                        self.assert_(
                            len(original.tostring()) == len(newimg.tostring()))
Пример #10
0
def high_freq(img, pct):
	f = float_version(img)
	cv.DFT(f, f, cv.CV_DXT_FORWARD)
	mask = cv.CreateImage( cv.GetSize(img), 8, 1)
	cv.Set(mask, 0)
	#cv.Set(mask, 255)
	w, h = cv.GetSize(img)
	dw = int(w*pct*0.5)
	dh = int(h*pct*0.5)
	#cv.Rectangle(mask, (0,0), (int(w*pct), int(h*pct)), 255, -1)
	#cv.Rectangle(mask, (int(w*pct), int(h*pct)), (w,h), 255, -1)
	cv.Rectangle(mask, (w/2-dw,h/2-dh), (w/2+dw,h/2+dh), 255, -1)
	cv.Set(f,0,mask)
	return f
	cv.DFT(f, f, cv.CV_DXT_INVERSE_SCALE)
	return f
Пример #11
0
    def spin(self):
        time.sleep(1.0)
        started = time.time()
        counter = 0
        cvim = cv.CreateImage((640, 480), cv.IPL_DEPTH_8U, 1)
        ball_xv = 10
        ball_yv = 10
        ball_x = 100
        ball_y = 100

        cvb = CvBridge()

        while not rospy.core.is_shutdown():

            cv.Set(cvim, 0)
            cv.Circle(cvim, (ball_x, ball_y), 10, 255, -1)

            ball_x += ball_xv
            ball_y += ball_yv
            if ball_x in [10, 630]:
                ball_xv = -ball_xv
            if ball_y in [10, 470]:
                ball_yv = -ball_yv

            self.pub.publish(cvb.cv_to_imgmsg(cvim))

            time.sleep(0.03)
Пример #12
0
def measure_focused_roi(im, roi, area, focus_points, debug=False):  
    g = Grid(cv.GetSize(im))      
    canvas = image.new_from(im)
    cv.Set(canvas, 0)
    focus_in_roi = image.And(focus_points, roi)
    if debug:
        image.show(focus_in_roi, "ROI + Focused Points")
        
    densities = []
    points = convert_to_points(focus_in_roi)
    groups = form_groups(points, estimated_size=24, iter=5)
    for group in groups:
        ch = ConvexHull(map(lambda x: (x[0], x[1]), group))
        
        ppp = ch.points_per_pixel()
        a = int(ppp * 255)
        ch.draw_filled_hull(canvas, rgb=(a,a,a))
    if debug:
        image.show(canvas, "Focused Regions in ROI")

    quadrants = g.split_in_four(canvas)
    sums = []
    for i,quad in enumerate(quadrants):
        sums.append(cv.Sum(quad)[0] / float(area/4))
    arr = array(sums)
    print arr.mean(), arr.std()
    diff = max(sums) - min(sums)
    
    return diff, arr.std()
Пример #13
0
def repaintCCs(image, doRepaint=None, returnMask=False, resizeMask=True, doFillBackground=True, bgPoint=(0, 0), newcol=255, connectivity=4):
    if doRepaint is None:
        doRepaint = lambda comp, col: False
    resultMask = cv.CreateImage((image.width + 2, image.height + 2), image.depth, image.nChannels)
    tempMask = cv.CreateImage((image.width + 2, image.height + 2), image.depth, image.nChannels)
    visitMask = cv.CreateImage((image.width + 2, image.height + 2), image.depth, image.nChannels)
    cv.Zero(resultMask)
    cv.Zero(tempMask)
    cv.Zero(visitMask)
    if doFillBackground:
        cv.FloodFill(image, bgPoint, 0, 0, 0, connectivity + cv.CV_FLOODFILL_MASK_ONLY + (255 << 8), visitMask)
    for x in xrange(image.width):
        for y in xrange(image.height):
            if visitMask[y + 1, x + 1] == 255:
                continue
            comp = cv.FloodFill(image, (x, y), 0, 0, 0, connectivity + cv.CV_FLOODFILL_MASK_ONLY + (255 << 8), tempMask)
            region = shiftRect(comp[2], 1, 1)
            cv.SetImageROI(tempMask, region)
            cv.SetImageROI(visitMask, region)
            cv.Or(tempMask, visitMask, visitMask)
            if doRepaint(comp, image[y, x]):
                cv.SetImageROI(resultMask, region)
                cv.Or(tempMask, resultMask, resultMask)
                cv.ResetImageROI(resultMask)
            cv.Zero(tempMask)
            cv.ResetImageROI(tempMask)
            cv.ResetImageROI(visitMask)
    if returnMask:
        if resizeMask: return cap.getSubImage(resultMask, (1, 1, image.width, image.height))
        else: return resultMask
    else:    
        cv.SetImageROI(resultMask, (1, 1, image.width, image.height))
        cv.Set(image, newcol, resultMask)
        return image
Пример #14
0
def setup(flipped, capture, thehandcolor):
    """Initializes camera and finds initial skin tone"""

    #creates initial window and prepares text
    color = (40, 0, 0)
    font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1.0, 1.0)
    textsize1 = (cv.GetSize(flipped)[0] / 2 - 150,
                 cv.GetSize(flipped)[1] / 2 - 140)
    textsize2 = (cv.GetSize(flipped)[0] / 2 - 150,
                 cv.GetSize(flipped)[1] / 2 - 110)
    point1 = (cv.GetSize(flipped)[0] / 2 - 25, cv.GetSize(flipped)[1] / 2 - 25)
    point2 = (cv.GetSize(flipped)[0] / 2 + 25, cv.GetSize(flipped)[1] / 2 + 25)

    #until Enter is pressed
    while (cv.WaitKey(10) != 10):

        #captures live video, and draws sub-box and text
        frame = cv.QueryFrame(capture)
        cv.Copy(frame, flipped)
        cv.Flip(flipped, flipped, 1)
        cv.Rectangle(flipped, point1, point2, color, 2)
        cv.PutText(flipped, "Put your hand in the box ", textsize1, font,
                   color)
        cv.PutText(flipped, "and press enter", textsize2, font, color)
        cv.ShowImage("w2", flipped)

    #Creates sub-image inside box, and returns average color in box
    sub = cv.GetSubRect(flipped, (cv.GetSize(flipped)[0] / 2 - 25,
                                  cv.GetSize(flipped)[1] / 2 - 25, 50, 50))
    cv.Set(thehandcolor, cv.Avg(sub))
    return cv.Avg(sub)
Пример #15
0
def getData():

  for i in range (0 , classes):
    for j in range (0, train_samples):
      if j < 10 :
        fichero = "OCR/"+str(i) + "/"+str(i)+"0"+str(j)+".pbm"
      else:
        fichero = "OCR/"+str(i) + "/"+str(i)+str(j)+".pbm"
      src_image = cv.LoadImage(fichero,0)
      prs_image = preprocessing(src_image, size, size)
  
         
      
      row = cv.GetRow(trainClasses, i*train_samples + j)
      cv.Set(row, cv.RealScalar(i))
      row = cv.GetRow(trainData,   i*train_samples + j)

      img = cv.CreateImage( ( size, size ), cv.IPL_DEPTH_32F, 1) 
      

      cv.ConvertScale(prs_image,img,0.0039215, 0)


      data = cv.GetSubRect(img,  (0,0, size,size))
      row1 = cv.Reshape( data, 0, 1 )
     
      cv.Copy(row1, row)
    def show_shapes(shapes):
        """ Function to show all of the shapes which are passed to it
    """
        cv.NamedWindow("Shape Model", cv.CV_WINDOW_AUTOSIZE)
        # Get size for the window
        max_x = int(max([pt.x for shape in shapes for pt in shape.pts]))
        max_y = int(max([pt.y for shape in shapes for pt in shape.pts]))
        min_x = int(min([pt.x for shape in shapes for pt in shape.pts]))
        min_y = int(min([pt.y for shape in shapes for pt in shape.pts]))

        i = cv.CreateImage((max_x - min_x + 20, max_y - min_y + 20),
                           cv.IPL_DEPTH_8U, 3)
        cv.Set(i, (0, 0, 0))
        for shape in shapes:
            r = randint(0, 255)
            g = randint(0, 255)
            b = randint(0, 255)
            #r = 0
            #g = 0
            #b = 0
            for pt_num, pt in enumerate(shape.pts):
                # Draw normals
                #norm = shape.get_normal_to_point(pt_num)
                #cv.Line(i,(pt.x-min_x,pt.y-min_y), \
                #    (norm[0]*10 + pt.x-min_x, norm[1]*10 + pt.y-min_y), (r, g, b))
                cv.Circle(i, (int(pt.x - min_x), int(pt.y - min_y)), 2,
                          (r, g, b), -1)
        cv.ShowImage("Shape Model", i)
Пример #17
0
def main():
    root = "/Users/soswow/Documents/Face Detection/test/negative"
    #    root = "/Users/soswow/Documents/Face Detection/test/sets/negative"
    #    root = "/Users/soswow/Documents/Face Detection/test/edge_view/positive"
    #    root = "/Users/soswow/Documents/Face Detection/test/sobel/positive"
    #    root = "/Users/soswow/Documents/Face Detection/test/sets/positive"
    #    root = "/Users/soswow/Documents/Face Detection/test/falses"

    for folder in os.listdir(root):
        path = p.join(root, folder)
        if p.isdir(path):
            sum = cv.CreateMat(32, 32, cv.CV_32F)
            cv.Zero(sum)
            k = 0
            for path, _ in directory_files(path):
                try:
                    img = cv.LoadImage(path, iscolor=False)
                except IOError:
                    continue
                mat = cv.CreateMat(32, 32, cv.CV_32F)
                cv.Zero(mat)
                cv.Convert(cv.GetMat(img), mat)
                cv.Add(mat, sum, sum)
                k += 1
            avg = cv.CreateMat(32, 32, cv.CV_32F)
            cv.Zero(avg)
            count = cv.CreateMat(32, 32, cv.CV_32F)
            cv.Zero(count)
            cv.Set(count, k)
            cv.Div(sum, count, avg)
            new_img = cv.CreateImage((32, 32), 8, 0)
            cv.Zero(new_img)
            cv.Convert(avg, new_img)
            cv.SaveImage(p.join(root, "%s-avg.png" % folder), new_img)
Пример #18
0
    def getForegroundPixels(self, bgcolor=None):
        '''
        @param bgcolor: The background color to use. Specify as an (R,G,B) tuple.
        Specify None for a blank/black background.
        @return: The full color foreground pixels on either a blank (black)
        background, or on a background color specified by the user.
        @note: You must call detect() before getForegroundPixels() to
        get updated information.
        '''
        if self._fgMask == None: return None

        #binary mask selecting foreground regions
        mask = self._fgMask.asOpenCVBW()

        #full color source image
        image = self._annotateImg.copy().asOpenCV()

        #dest image, full color, but initially all zeros (black/background)
        # we will copy the foreground areas from image to here.
        dest = cv.CloneImage(image)
        if bgcolor == None:
            cv.SetZero(dest)
        else:
            cv.Set(dest, cv.RGB(*bgcolor))

        cv.Copy(image, dest,
                mask)  #copy only pixels from image where mask != 0
        return pv.Image(dest)
    def getAverageValues2(self, images):
        """ get the average values over all the images
            for every two images, divides the images by 2
            then adds them together
        """

        if len(images) == 0:
            return None
        if len(images) == 1:
            return images[0]

        width = images[0].width
        height = images[0].height
        # create image with only 2's
        # this will be used for division
        divisionImage = cv.CreateImage((width, height), cv.IPL_DEPTH_8U, 1)
        cv.Set(divisionImage, 2)
        image1 = cv.CreateImage((width, height), cv.IPL_DEPTH_8U, 1)
        image2 = cv.CreateImage((width, height), cv.IPL_DEPTH_8U, 1)

        avgImage = cv.CloneImage(images[0])
        for image in images:
            # divide images by 2
            cv.Div(avgImage, divisionImage, image1)
            cv.Div(image, divisionImage, image2)

            # add them to get result
            cv.Add(image1, image2, avgImage)

        return avgImage
Пример #20
0
def removeBadBackground(seg):
    threshUp = cv.CreateImage(cv.GetSize(seg), cv.IPL_DEPTH_8U, 1)
    comparison = cv.CreateImage(cv.GetSize(seg), cv.IPL_DEPTH_8U, 1)
    visitMask = cv.CreateImage(cv.GetSize(seg), cv.IPL_DEPTH_8U, 1)
    ffMask = cv.CreateImage((seg.width + 2, seg.height + 2), cv.IPL_DEPTH_8U,
                            1)
    cv.Threshold(seg, threshUp, 1, 255, cv.CV_THRESH_BINARY)
    cv.Zero(visitMask)
    cv.Zero(ffMask)
    for x in xrange(seg.width):
        for y in xrange(seg.height):
            if seg[y, x] != 96 or visitMask[y, x] == 255: continue
            comp = cv.FloodFill(threshUp, (x, y), 0, 0, 0,
                                4 + cv.CV_FLOODFILL_MASK_ONLY + (255 << 8),
                                ffMask)
            rect = comp[2]
            cv.SetImageROI(ffMask, cap.shiftRect(rect, 1, 1))
            cv.OrS(ffMask, 1, ffMask)
            cv.SetImageROI(seg, rect)
            cv.SetImageROI(comparison, rect)
            cv.Cmp(
                seg, ffMask, comparison,
                cv.CV_CMP_EQ)  # 'comparison' does not need to be zeroed later
            intersect = cv.CountNonZero(comparison)
            cv.SetImageROI(visitMask, rect)
            cv.Or(visitMask, ffMask, visitMask)
            cv.ResetImageROI(visitMask)
            if intersect == 0:
                cv.Set(seg, 0, ffMask)
            cv.Zero(ffMask)
            cv.ResetImageROI(seg)
            cv.ResetImageROI(ffMask)
    return seg
Пример #21
0
def recognise(image, addr, extras):
    result = ""
    x = image.width - 1
    channels = getChannels(image)
    bestBounds = []
    #cv.NamedWindow("pic", 1)
    #cv.NamedWindow("cols", 0)
    while len(result) < nSegs and x >= minW:
        x = cap.getBound(image, cap.CAP_BOUND_RIGHT, start=x)
        ratings = []
        for w in xrange(minW, min(maxW + 1, x)):
            bounds = findBounds(image, x, w)
            subImage = cap.getSubImage(image, bounds)
            flags = findColors(subImage)
            for index, flag in enumerate(flags):
                if not flag: continue
                seg = getSegment(channels[index], image, bounds)
                seg = cap.flattenImage(adjustSize(seg, segSize))
                guesses = ann.run(seg)
                charIndex = cap.argmax(guesses)
                ratings.append(
                    (guesses[charIndex], charIndex, index, bounds, seg))
        best = max(ratings, key=itemgetter(0))
        result += charset[best[1]]
        bestChannel = channels[best[2]]
        cv.SetImageROI(bestChannel, best[3])
        cv.Set(bestChannel, 96, bestChannel)
        cv.ResetImageROI(bestChannel)
        bestBounds.append(best[3])
        bestW = best[3][2]
        x -= bestW
        #print ann.run(best[4])
    cap.processExtras([cap.drawComponents(image, bestBounds)], addr, extras,
                      cap.CAP_STAGE_RECOGNISE)
    return result[::-1]
Пример #22
0
    def drawHistogram(self, image, chnum, hist_arr, plateaus):
        positions = (0, (self.Ihist.height + 10), 2 * self.Ihist.height + 20)
        colour_values = _blue, _green, _red
        colour = colour_values[chnum]
        Y = positions[chnum]

        cv.Set(self.Ihist, _trans)
        bin_w = cv.Round(float(self.Ihist.width) / self.hist_size)
        # min_value, max_value, pmin, pmax = cv.GetMinMaxHistValue(hist)

        X = image.width - self.Ihist.width
        rect = (X, Y, self.Ihist.width, self.Ihist.height)

        cv.SetImageROI(image, rect)
        scaling = self.Ihist.height / max(hist_arr)
        hist_arr *= scaling
        for i, v in enumerate(hist_arr):
            cv.Rectangle(self.Ihist, (i * bin_w, self.Ihist.height),
                         ((i + 1) * bin_w, self.Ihist.height - round(v)),
                         colour, -1, 8, 0)

        for i in plateaus[chnum]:
            cv.Rectangle(
                self.Ihist, (i * bin_w, self.Ihist.height),
                ((i + 1) * bin_w, self.Ihist.height - round(hist_arr[i])),
                _white, -1, 8, 0)

        cv.AddWeighted(image, 1 - self.hist_visibility, self.Ihist,
                       self.hist_visibility, 0.0, image)

        cv.ResetImageROI(image)
Пример #23
0
def findCCs(image, erasecol=0, doContinue=None, doSkip=None, bRange=0, connectivity=8):
    """
    Finds all connected components in the image.
    doContinue is a function applied to the color of every new pixel in the image.
    If it is true, this pixel is ignored. Default: <= 128
    doSkip is a function applied to every new connected component found by the
    function. If it is true, this component will not be included in the result.
    Default: do not skip anything.
    """
    if doContinue is None:
        doContinue = lambda col: col <= 128
    if doSkip is None:
        doSkip = lambda comp: False
    mask = cv.CreateImage((image.width + 2, image.height + 2), cv.IPL_DEPTH_8U, 1)
    cv.Zero(mask)
    components = []
    for x in range(image.width):
        for y in range(image.height):
            if doContinue(image[y, x]):
                continue
            comp = cv.FloodFill(image, (x, y), 0, bRange, bRange, connectivity + cv.CV_FLOODFILL_MASK_ONLY + (255 << 8), mask) # here 3rd argument is ignored
            region = shiftRect(comp[2], 1, 1)
            if not doSkip(comp):
                seg = cvext.getSubImage(mask, region)
                components.append((comp[0], comp[1], comp[2], seg))
            cv.SetImageROI(image, comp[2])
            cv.SetImageROI(mask, region)
            cv.Set(image, erasecol, mask)
            cv.Zero(mask)
            cv.ResetImageROI(image)
            cv.ResetImageROI(mask)
    return components
Пример #24
0
def blockfacemask(bgrimg):
    global lastrects
    rects = detect_faces(bgrimg)
    rects = addheights(rects)
    newimg = im.newgray(bgrimg)
    cv.Set(newimg, 255)
    if rects:
        lastrects = rects
    else:
        rects = lastrects
    if rects:
        for rect in rects:
            cv.SetImageROI(newimg, rect)
            cv.Set(newimg, 0)
            cv.ResetImageROI(newimg)
    return newimg
Пример #25
0
    def redraw_monocular(self, drawable):
        width, height = cv.GetSize(drawable.scrib)

        display = cv.CreateMat(max(480, height), width + 100, cv.CV_8UC3)
        cv.Zero(display)
        cv.Copy(drawable.scrib, cv.GetSubRect(display, (0, 0, width, height)))
        cv.Set(cv.GetSubRect(display, (width, 0, 100, height)),
               (255, 255, 255))

        self.buttons(display)
        if not self.c.calibrated:
            if drawable.params:
                for i, (label, lo, hi, progress) in enumerate(drawable.params):
                    (w, _), _ = cv.GetTextSize(label, self.font)
                    cv.PutText(display, label,
                               (width + (100 - w) / 2, self.y(i)), self.font,
                               (0, 0, 0))
                    color = (0, 255, 0)
                    if progress < 1.0:
                        color = (0, int(progress * 255.), 255)
                    cv.Line(display, (int(width + lo * 100), self.y(i) + 20),
                            (int(width + hi * 100), self.y(i) + 20), color, 4)

        else:
            cv.PutText(display, "lin.", (width, self.y(0)), self.font,
                       (0, 0, 0))
            linerror = drawable.linear_error
            if linerror < 0:
                msg = "?"
            else:
                msg = "%.2f" % linerror
                #print "linear", linerror
            cv.PutText(display, msg, (width, self.y(1)), self.font, (0, 0, 0))

        self.show(display)
Пример #26
0
def anaglyph(left_color, right_color, correction):
    #create oversized image
    #result = cv.CreateImage(cv.GetSize(right_color), cv.IPL_DEPTH_8U, 4)
    w, h = cv.GetSize(left_color)
    bgra = cv.CreateImage((w * 2, h), cv.IPL_DEPTH_8U, 4)
    cv.Set(bgra, 0)
    right_bgra = add_alpha_channel(right_color,
                                   round(255 / 2.))  #cyan (remove red?)
    left_bgra = add_alpha_channel(left_color,
                                  round(255 / 2.))  #red (remove blue?, green?)

    #remove blue & green from left => red
    left_red = remove_channels(left_bgra, [0, 1])
    #remove red from right_bgra => cyan
    right_cyan = remove_channels(right_bgra, [2])

    if correction < 0:
        left_area = cv.GetSubRect(bgra, (-correction, 0, w, h))
        right_area = cv.GetSubRect(bgra, (0, 0, w, h))
        valid_area = cv.GetSubRect(bgra, (-correction, 0, w + correction, h))
    else:
        #copy left & right onto bgra
        left_area = cv.GetSubRect(bgra, (0, 0, w, h))
        right_area = cv.GetSubRect(bgra, (correction, 0, w, h))
        valid_area = cv.GetSubRect(bgra, (correction, 0, w - correction, h))

    cv.Add(left_red, left_area, left_area)
    cv.Add(right_cyan, right_area, right_area)

    #return right_cyan
    #return left_red
    #return left_bgra
    #return bgra
    return valid_area
Пример #27
0
 def to_img(self,
            height=200,
            color=cv.RGB(0, 0, 0),
            offset=(0, 0),
            bg=(255, 255, 255)):
     im = cv.CreateImage((self.bins * self.scale, height), 8, 3)
     cv.Set(im, bg)
     return self.draw(im, color, offset=(0, 0))
Пример #28
0
def cutLetters(image, thresh, log):
    mask = createMask(image, thresh)
    log.log(mask)
    h = cv.CreateImage(cv.GetSize(image), image.depth, 1)
    cv.CvtColor(image, image, cv.CV_BGR2HSV)
    cv.Split(image, h, None, None, None)
    log.log(h)
    cv.Set(h, cv.ScalarAll(255), mask)
    return h
    def update_high_color(self, pos):
        self.busy_updating = True
        self.high_color = pos
        cv.NamedWindow("End at color", cv.CV_WINDOW_AUTOSIZE)
        cv.MoveWindow("End at color", 750, 0)
        color_swatch = cv.CreateImage((200, 140), 8, 3)
        cv.Set(color_swatch, HSV_to_RGB(self.high_color))
        cv.ShowImage("End at color", color_swatch)
	self.busy_updating = False
Пример #30
0
 def test_2686307(self):
     lena = cv.LoadImage(find_sample("lena.jpg"), 1)
     dst = cv.CreateImage((512, 512), 8, 3)
     cv.Set(dst, (128, 192, 255))
     mask = cv.CreateImage((512, 512), 8, 1)
     cv.Zero(mask)
     cv.Rectangle(mask, (10, 10), (300, 100), 255, -1)
     cv.Copy(lena, dst, mask)
     self.snapL([lena, dst, mask])