def setUp(self):
        frame = cvLoadImage(image_fname)
        frame_size = cvGetSize(frame)
        r = cvCreateImage(frame_size, 8, 1)
        g = cvCreateImage(frame_size, 8, 1)
        b = cvCreateImage(frame_size, 8, 1)

        cvSplit(frame, r, g, b, None)
        self.rgb = (r, g, b)
        assert frame is not None

        hist_size = [64, 64, 64]
        ranges = [[0, 255], [0, 255], [0, 255]]
        self.hist = cvCreateHist(hist_size, CV_HIST_ARRAY, ranges, 1)
    def setUp(self):
        frame = cvLoadImage(image_fname)
        frame_size = cvGetSize(frame)
        r = cvCreateImage(frame_size, 8, 1)
        g = cvCreateImage(frame_size, 8, 1)
        b = cvCreateImage(frame_size, 8, 1)

        cvSplit(frame, r, g, b, None)
        self.rgb = (r, g, b)
        assert (frame is not None)

        hist_size = [64, 64, 64]
        ranges = [[0, 255], [0, 255], [0, 255]]
        self.hist = cvCreateHist(hist_size, CV_HIST_ARRAY, ranges, 1)
Пример #3
0
    def PIL2Ipl(input):
        """Converts a PIL image to the OpenCV/IPL CvMat data format.
  
      Supported input image formats are:
          RGB
          L
          F
      """

        if not (isinstance(input, PIL.Image.Image)):
            raise TypeError, 'Must be called with PIL.Image.Image!'

        # mode dictionary:
        # (pil_mode : (ipl_depth, ipl_channels)
        mode_list = {
            "RGB": (cv.IPL_DEPTH_8U, 3),
            "L": (cv.IPL_DEPTH_8U, 1),
            "F": (cv.IPL_DEPTH_32F, 1)
        }

        if not mode_list.has_key(input.mode):
            raise ValueError, 'unknown or unsupported input mode'

        result = cv.cvCreateImage(
            cv.cvSize(input.size[0], input.size[1]),  # size
            mode_list[input.mode][0],  # depth
            mode_list[input.mode][1]  # channels
        )

        # set imageData
        result.imageData = input.tostring()
        return result
Пример #4
0
    def __init__(self):
        self.active = False
        self.contours_image = cv.cvCreateImage((640, 480), 8, 3)
        self.dwidth = 240
        self.dheight = 180
        self.loops = 0

        self.preview_image = cv.CreateImage((self.dwidth, self.dheight),
                                            cv.IPL_DEPTH_8U, 3)

        n = self.dwidth * self.dheight * 3
        raw = (ctypes.c_ubyte * n)()
        for x in range(n):
            raw[x] = 64
        ptr = ctypes.pointer(raw)
        pix = gtk.gdk_pixbuf_new_from_data(
            ptr,
            gtk.GDK_COLORSPACE_RGB,
            False,  # ALPHA
            8,  # bits per sample
            self.dwidth,
            self.dheight,
            self.dwidth * 3,  # row-stride
        )
        self.preview_image_gtk = gtk.gtk_image_new_from_pixbuf(pix)
Пример #5
0
 def PIL2Ipl(input):
     """Converts a PIL image to the OpenCV/IPL CvMat data format.
 
     Supported input image formats are:
         RGB
         L
         F
     """
 
     if not (isinstance(input, PIL.Image.Image)):
         raise TypeError, 'Must be called with PIL.Image.Image!'
     
     # mode dictionary:
     # (pil_mode : (ipl_depth, ipl_channels)
     mode_list = {
         "RGB" : (cv.IPL_DEPTH_8U, 3),
         "L"   : (cv.IPL_DEPTH_8U, 1),
         "F"   : (cv.IPL_DEPTH_32F, 1)
         }
     
     if not mode_list.has_key(input.mode):
         raise ValueError, 'unknown or unsupported input mode'
     
     result = cv.cvCreateImage(
         cv.cvSize(input.size[0], input.size[1]),  # size
         mode_list[input.mode][0],  # depth
         mode_list[input.mode][1]  # channels
         )
 
     # set imageData
     result.imageData = input.tostring()
     return result
Пример #6
0
	def run(self):

		if self.capture:
			webcam_frame = cv.QueryFrame( self.capture )
		else:
			print "Capture failed!"
			return

		if self.inverted_video.get_active():
			cv.ConvertImage(webcam_frame, webcam_frame, cv._CVTIMG_FLIP)
		cv.ConvertImage(webcam_frame, self.display_frame, cv._CVTIMG_SWAP_RB)




		if False:
			# PROCESS WEBCAM FRAME HERE...
			inputImage = cv.cvCreateImage(cv.cvGetSize(webcam_frame), cv.IPL_DEPTH_8U, 1)
			cv.cvCvtColor(webcam_frame, inputImage, cv.CV_RGB2GRAY);

			cv.cvThreshold(inputImage, inputImage, 128, 255, cv.CV_THRESH_BINARY)

			mysize = cv.cvGetSize(webcam_frame)
			height = mysize.height
			width = mysize.width


			# Find horizontal first-moment:
			if False:
				mysum = 0
				for i in range(height):
					mysum += sum(inputImage[i,:])

				print "Sum:", mysum

			cv.cvMerge( inputImage, inputImage, inputImage, None, self.display_frame )




		incoming_pixbuf = gtk.gdk.pixbuf_new_from_data(
				self.display_frame.imageData,
				gtk.gdk.COLORSPACE_RGB,
				False,
				8,
				self.display_frame.width,
				self.display_frame.height,
				self.display_frame.widthStep)
		incoming_pixbuf.copy_area(0, 0, self.display_frame.width, self.display_frame.height, self.webcam_pixbuf, 0, 0)

		self.video_image.queue_draw()


		return self.video_enabled_button.get_active()
Пример #7
0
    def NumPy2Ipl(input):
        """Converts a numpy array to the OpenCV/IPL CvMat data format.
  
      Supported input array layouts:
         2 dimensions of numpy.uint8
         3 dimensions of numpy.uint8
         2 dimensions of numpy.float32
         2 dimensions of numpy.float64
      """

        if not isinstance(input, numpy.ndarray):
            raise TypeError, 'Must be called with numpy.ndarray!'

        # Check the number of dimensions of the input array
        ndim = input.ndim
        if not ndim in (2, 3):
            raise ValueError, 'Only 2D-arrays and 3D-arrays are supported!'

        # Get the number of channels
        if ndim == 2:
            channels = 1
        else:
            channels = input.shape[2]

        # Get the image depth
        if input.dtype == numpy.uint8:
            depth = cv.IPL_DEPTH_8U
        elif input.dtype == numpy.float32:
            depth = cv.IPL_DEPTH_32F
        elif input.dtype == numpy.float64:
            depth = cv.IPL_DEPTH_64F

        # supported modes list: [(channels, dtype), ...]
        modes_list = [(1, numpy.uint8), (3, numpy.uint8), (1, numpy.float32),
                      (1, numpy.float64)]

        # Check if the input array layout is supported
        if not (channels, input.dtype) in modes_list:
            raise ValueError, 'Unknown or unsupported input mode'

        result = cv.cvCreateImage(
            cv.cvSize(input.shape[1], input.shape[0]),  # size
            depth,  # depth
            channels  # channels
        )

        # set imageData
        result.imageData = input.tostring()

        return result
Пример #8
0
 def NumPy2Ipl(input):
     """Converts a numpy array to the OpenCV/IPL CvMat data format.
 
     Supported input array layouts:
        2 dimensions of numpy.uint8
        3 dimensions of numpy.uint8
        2 dimensions of numpy.float32
        2 dimensions of numpy.float64
     """
     
     if not isinstance(input, numpy.ndarray):
         raise TypeError, 'Must be called with numpy.ndarray!'
 
     # Check the number of dimensions of the input array
     ndim = input.ndim
     if not ndim in (2, 3):
         raise ValueError, 'Only 2D-arrays and 3D-arrays are supported!'
     
     # Get the number of channels
     if ndim == 2:
         channels = 1
     else:
         channels = input.shape[2]
     
     # Get the image depth
     if input.dtype == numpy.uint8:
         depth = cv.IPL_DEPTH_8U
     elif input.dtype == numpy.float32:
         depth = cv.IPL_DEPTH_32F
     elif input.dtype == numpy.float64:
         depth = cv.IPL_DEPTH_64F
     
     # supported modes list: [(channels, dtype), ...]
     modes_list = [(1, numpy.uint8), (3, numpy.uint8), (1, numpy.float32), (1, numpy.float64)]
     
     # Check if the input array layout is supported
     if not (channels, input.dtype) in modes_list:
         raise ValueError, 'Unknown or unsupported input mode'
     
     result = cv.cvCreateImage(
         cv.cvSize(input.shape[1], input.shape[0]),  # size
         depth,  # depth
         channels  # channels
         )
     
     # set imageData
     result.imageData = input.tostring()
     
     return result
def Ipl2NumPy(input):
    """Converts an OpenCV image to a numpy array.

    Supported input image formats are
    IPL_DEPTH_8U  x 1 channel
    IPL_DEPTH_8U  x 3 channels
    IPL_DEPTH_32F x 1 channel
    IPL_DEPTH_32F x 2 channels
    IPL_DEPTH_32S x 1 channel
    IPL_DEPTH_64F x 1 channel
    IPL_DEPTH_64F x 2 channels
    """
    import ipdb

    ipdb.set_trace()

    if not isinstance(input, cv.CvMat):
        raise TypeError, "must be called with a cv.CvMat!"

    # data type dictionary:
    # (channels, depth) : numpy dtype
    ipl2dtype = {
        (1, cv.IPL_DEPTH_8U): numpy.uint8,
        (3, cv.IPL_DEPTH_8U): numpy.uint8,
        (1, cv.IPL_DEPTH_32F): numpy.float32,
        (2, cv.IPL_DEPTH_32F): numpy.float32,
        (1, cv.IPL_DEPTH_32S): numpy.int32,
        (1, cv.IPL_DEPTH_64F): numpy.float64,
        (2, cv.IPL_DEPTH_64F): numpy.float64,
    }

    key = (input.nChannels, input.depth)
    if not ipl2dtype.has_key(key):
        raise ValueError, "unknown or unsupported input mode"

    # Get the numpy array and reshape it correctly
    # ATTENTION: flipped dimensions width/height on 2007-11-15
    if input.nChannels == 1:
        array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
        return numpy.reshape(array_1d, (input.height, input.width))
    elif input.nChannels == 2:
        array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
        return numpy.reshape(array_1d, (input.height, input.width, 2))
    elif input.nChannels == 3:
        # Change the order of channels from BGR to RGB
        rgb = cv.cvCreateImage(cv.cvSize(input.width, input.height), input.depth, 3)
        cv.cvCvtColor(input, rgb, cv.CV_BGR2RGB)
        array_1d = numpy.fromstring(rgb.imageData, dtype=ipl2dtype[key])
        return numpy.reshape(array_1d, (input.height, input.width, 3))
def Ipl2NumPy(input):
    """Converts an OpenCV image to a numpy array.

    Supported input image formats are
    IPL_DEPTH_8U  x 1 channel
    IPL_DEPTH_8U  x 3 channels
    IPL_DEPTH_32F x 1 channel
    IPL_DEPTH_32F x 2 channels
    IPL_DEPTH_32S x 1 channel
    IPL_DEPTH_64F x 1 channel
    IPL_DEPTH_64F x 2 channels
    """
    import ipdb
    ipdb.set_trace()

    if not isinstance(input, cv.CvMat):
        raise TypeError, 'must be called with a cv.CvMat!'

    # data type dictionary:
    # (channels, depth) : numpy dtype
    ipl2dtype = {
        (1, cv.IPL_DEPTH_8U): numpy.uint8,
        (3, cv.IPL_DEPTH_8U): numpy.uint8,
        (1, cv.IPL_DEPTH_32F): numpy.float32,
        (2, cv.IPL_DEPTH_32F): numpy.float32,
        (1, cv.IPL_DEPTH_32S): numpy.int32,
        (1, cv.IPL_DEPTH_64F): numpy.float64,
        (2, cv.IPL_DEPTH_64F): numpy.float64
    }

    key = (input.nChannels, input.depth)
    if not ipl2dtype.has_key(key):
        raise ValueError, 'unknown or unsupported input mode'

    # Get the numpy array and reshape it correctly
    # ATTENTION: flipped dimensions width/height on 2007-11-15
    if input.nChannels == 1:
        array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
        return numpy.reshape(array_1d, (input.height, input.width))
    elif input.nChannels == 2:
        array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
        return numpy.reshape(array_1d, (input.height, input.width, 2))
    elif input.nChannels == 3:
        # Change the order of channels from BGR to RGB
        rgb = cv.cvCreateImage(cv.cvSize(input.width, input.height),
                               input.depth, 3)
        cv.cvCvtColor(input, rgb, cv.CV_BGR2RGB)
        array_1d = numpy.fromstring(rgb.imageData, dtype=ipl2dtype[key])
        return numpy.reshape(array_1d, (input.height, input.width, 3))
 def test05_Ipl2NumPy(self):
     """Test the adaptors.Ipl2NumPy function."""
 
     a = adaptors.Ipl2NumPy(self.ipl_image)
     a_1d = numpy.reshape(a, (a.size, ))
     # For 3-channel IPL images  the order of channels will be BGR
     # but NumPy array order of channels will be RGB so a conversion
     # is needed before we can compare both images
     if self.ipl_image.nChannels == 3:
         rgb = cv.cvCreateImage(cv.cvSize(self.ipl_image.width, self.ipl_image.height), self.ipl_image.depth, 3)
         cv.cvCvtColor(self.ipl_image, rgb, cv.CV_BGR2RGB)
         self.assert_(a_1d.tostring() == rgb.imageData,
             'The returned image has not been properly constructed.')
     else:
         self.assert_(a_1d.tostring() == self.ipl_image.imageData,
             'The returned image has not been properly constructed.')
Пример #12
0
 def Ipl2NumPy(input):
     """Converts an OpenCV/IPL image to a numpy array.
 
     Supported input image formats are
        IPL_DEPTH_8U  x 1 channel
        IPL_DEPTH_8U  x 3 channels
        IPL_DEPTH_32F x 1 channel
        IPL_DEPTH_64F x 1 channel
     """
 
     if not isinstance(input, cv.CvMat):
         raise TypeError, 'must be called with a cv.CvMat!'
 
     # assert that the channels are interleaved
     if input.dataOrder != 0:
         raise ValueError, 'dataOrder must be 0 (interleaved)!'
 
     # data type dictionary:
     # (channels, depth) : numpy dtype
     ipl2dtype = {
         (1, cv.IPL_DEPTH_8U)  : numpy.uint8,
         (3, cv.IPL_DEPTH_8U)  : numpy.uint8,
         (1, cv.IPL_DEPTH_32F) : numpy.float32,
         (1, cv.IPL_DEPTH_64F) : numpy.float64
         }
 
     key = (input.nChannels, input.depth)
     if not ipl2dtype.has_key(key):
         raise ValueError, 'unknown or unsupported input mode'
 
     # Get the numpy array and reshape it correctly
     if input.nChannels == 1:
         array_1d = numpy.fromstring(input.imageData, dtype=ipl2dtype[key])
         return numpy.reshape(array_1d, (input.height, input.width))
     elif input.nChannels == 3:
         # Change the order of channels from BGR to RGB
         rgb = cv.cvCreateImage(cv.cvSize(input.width, input.height), input.depth, 3)
         cv.cvCvtColor(input, rgb, cv.CV_BGR2RGB)
         array_1d = numpy.fromstring(rgb.imageData, dtype=ipl2dtype[key])
         return numpy.reshape(array_1d, (input.height, input.width, 3))
Пример #13
0
def logPolar(im,center=None,radius=None,M=None,size=(64,128)):
    '''
    Produce a log polar transform of the image.  See OpenCV for details.
    The scale space is calculated based on radius or M.  If both are given 
    M takes priority.
    '''
    #M=1.0
    w,h = im.size
    if radius == None:
        radius = 0.5*min(w,h)
        
    if M == None:
        #rho=M*log(sqrt(x2+y2))
        #size[0] = M*log(r)
        M = size[0]/np.log(radius)

    if center == None:
        center = pv.Point(0.5*w,0.5*h)
    src = im.asOpenCV()
    dst = cv.cvCreateImage( cv.cvSize(size[0],size[1]), 8, 3 );
    cv.cvLogPolar( src, dst, center.asOpenCV(), M, cv.CV_INTER_LINEAR+cv.CV_WARP_FILL_OUTLIERS )
    return pv.Image(dst)
Пример #14
0
	def initialize_video(self):

		webcam_frame = cv.QueryFrame( self.capture )

		if not webcam_frame:
			print "Frame acquisition failed."
			return False

		self.webcam_pixbuf = gtk.gdk.pixbuf_new_from_data(
			webcam_frame.imageData,
			gtk.gdk.COLORSPACE_RGB,
			False,
			8,
			webcam_frame.width,
			webcam_frame.height,
			webcam_frame.widthStep)
		self.video_image.set_from_pixbuf(self.webcam_pixbuf)


                self.display_frame = cv.cvCreateImage( cv.cvSize(webcam_frame.width, webcam_frame.height), cv.IPL_DEPTH_8U, 3)

		return True
Пример #15
0
    def __init__(self):
        self.active = False
        self.contours_image = cv.cvCreateImage((640, 480), 8, 3)
        self.dwidth = 320
        self.dheight = 240

        self.preview_image = cv.CreateImage((self.dwidth, self.dheight), cv.IPL_DEPTH_8U, 3)

        n = self.dwidth * self.dheight * 3
        raw = (ctypes.c_ubyte * n)()
        for x in range(n):
            raw[x] = 64
        ptr = ctypes.pointer(raw)
        pix = gtk.gdk_pixbuf_new_from_data(
            ptr,
            gtk.GDK_COLORSPACE_RGB,
            False,  # ALPHA
            8,  # bits per sample
            self.dwidth,
            self.dheight,
            self.dwidth * 3,  # row-stride
        )
        self.preview_image_gtk = gtk.gtk_image_new_from_pixbuf(pix)
Пример #16
0
 def __init__(self):
     self.active = False
     self.contours_image = cv.cvCreateImage((640, 480), 8, 3)
     # self.storage_poly = cv.CreateMemStorage(0)
     gui.NamedWindow("contours", 1)
Пример #17
0
 def __init__(self):
     self.active = False
     self.contours_image = cv.cvCreateImage((640, 480), 8, 3)
     #self.storage_poly = cv.CreateMemStorage(0)
     gui.NamedWindow('contours', 1)
Пример #18
0
    def separation(self, debug=False):
        rel_slice_point = self.rel_original_point  # NOQA
        rel_remained_point = self.rel_original_point

        slice_line = self.slice_line
        src = self.src
        original_size = self.original_size

        #  vector<PixPoint>* pixels = &slice_line.pixels;
        pixels = slice_line.pixels
        #  // x軸方向に分割した場合
        if slice_line.is_horizontal:
            slice_size: CvSize = CvSize()
            remained_size: CvSize = CvSize()
            if slice_line.theta == 90:
                slice_size = CvSize(src.width, slice_line.position)
                remained_size = CvSize(src.width,
                                       src.height - slice_line.position)
            else:
                if pixels.at(pixels.size() - 1).y < slice_line.position:
                    slice_size = CvSize(
                        pixels.at(pixels.size() - 1).x + 1,
                        slice_line.position + 1)
                else:
                    slice_size = CvSize(
                        pixels.at(pixels.size() - 1).x + 1,
                        pixels.at(pixels.size() - 1).y + 1)
                if pixels.at(pixels.size() - 1).y < slice_line.position:
                    remained_size = CvSize(
                        src.width + 1,
                        src.height - pixels.at(pixels.size() - 1).y + 1)
                else:
                    remained_size = CvSize(
                        src.width + 1, src.height - slice_line.position + 1)
            slice_src = cvCreateImage(slice_size, src.depth, src.nChannels)
            cvSet(slice_src, cvScalarAll(255), 0)
            remained_src = cvCreateImage(remained_size, src.depth,
                                         src.nChannels)
            cvSet(remained_src, cvScalarAll(255), 0)

            rel_remained_point.y += slice_line.position

            h: int = 0
            w: int = 0
            c: int = 0
            if (src.width == pixels.size()) and (slice_line.theta == 90):
                for w in range(src.width):
                    for h in range(src.height):
                        if h < slice_line.position:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep *
                                    (h - slice_line.position) +
                                    w * remained_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
            elif (src.width == pixels.size()) and (slice_line.theta > 90):
                for w in range(src.width):
                    for h in range(src.height):
                        if h < pixels.at(w).y:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep *
                                    (h - pixels.at(pixels.size() - 1).y) +
                                    w * slice_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
            elif (src.width == pixels.size()) and (slice_line.theta <= 90):
                for w in range(src.width):
                    for h in range(src.height):
                        if h < pixels.at(w).y:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep *
                                    (h - slice_line.position) +
                                    w * slice_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
            elif (src.width > pixels.size()) and (slice_line.theta > 90):
                for w in range(pixels.size()):
                    for h in range(src.height):
                        if h < pixels.at(w).y:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep * h +
                                    w * remained_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
                for w in range(int(pixels.size()), src.width):
                    for h in range(src.height):
                        for c in range(src.nChannels):
                            remained_src.imageData[remained_src.widthStep * h +
                                                   w * remained_src.nChannels +
                                                   c] = src.imageData[
                                                       src.widthStep * h +
                                                       w * src.nChannels + c]
            else:
                for w in range(pixels.size()):
                    for h in range(src.height):
                        if h < pixels.at(w).y:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep *
                                    (h - slice_line.position) +
                                    w * remained_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
                for w in range(int(pixels.size(), src.width)):
                    for h in range(src.height):
                        for c in range(src.nChannels):
                            slice_src.imageData[slice_src.widthStep * h +
                                                w * slice_src.nChannels +
                                                c] = src.imageData[
                                                    src.widthStep * h +
                                                    w * src.nChannels + c]
        #  // y軸方向に分割した場合
        else:
            slice_size: CvSize = CvSize()
            remained_size: CvSize = CvSize()
            if slice_line.theta == 90:
                slice_size = CvSize(slice_line.position, src.height)
                remained_size = CvSize(src.width - slice_line.position,
                                       src.height)
            else:
                if pixels.at(pixels.size() - 1).x < slice_line.position:
                    slice_size = CvSize(slice_line.position + 1,
                                        pixels.at(pixels.size() - 1).y + 1)
                else:
                    slice_size = CvSize(
                        pixels.at(pixels.size() - 1).x + 1,
                        src.height)  # pixels.at(pixels.size() - 1).y+1)
                if pixels.at(pixels.size() - 1).x < slice_line.position:
                    remained_size = CvSize(
                        src.width - pixels.at(pixels.size() - 1).x + 1,
                        src.height)
                else:
                    remained_size = CvSize(src.width - slice_line.position,
                                           pixels.at(pixels.size() - 1).y + 1)
            slice_src = cvCreateImage(slice_size, src.depth, src.nChannels)
            cvSet(slice_src, cvScalarAll(255), 0)
            remained_src = cvCreateImage(remained_size, src.depth,
                                         src.nChannels)
            cvSet(remained_src, cvScalarAll(255), 0)

            rel_remained_point.x += slice_line.position

            h: int = 0
            w: int = 0
            c: int = 0
            if (src.height == pixels.size()) and (slice_line.theta == 90):
                for h in range(src.height):
                    for w in range(src.width):
                        if w < slice_line.position:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep * h +
                                    (w - slice_line.position) *
                                    remained_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
            elif (src.height == pixels.size()) and (slice_line.theta > 90):
                for h in range(src.height):
                    for w in range(src.width):
                        if w < pixels.at(h).x:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep * h +
                                    (w - pixels.at(pixels.size() - 1).x) *
                                    slice_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
            elif (src.height == pixels.size()) and (slice_line.theta < 90):
                for h in range(src.height):
                    for w in range(src.width):
                        if w < pixels.at(h).x:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep * h +
                                    (w - slice_line.position) *
                                    slice_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
            elif (src.height > pixels.size()) and (slice_line.theta > 90):
                for h in range(pixels.size()):
                    for w in range(src.width):
                        if w < pixels.at(h).x:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep * h +
                                    w * remained_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
                for h in range(pixels.size()):
                    for w in range(src.width):
                        for c in range(src.nChannels):
                            remained_src.imageData[remained_src.widthStep * h +
                                                   w * remained_src.nChannels +
                                                   c] = src.imageData[
                                                       src.widthStep * h +
                                                       w * src.nChannels + c]
            else:
                for h in range(pixels.size()):
                    for w in range(src.width):
                        if w < pixels.at(h).x:
                            for c in range(src.nChannels):
                                slice_src.imageData[slice_src.widthStep * h +
                                                    w * slice_src.nChannels +
                                                    c] = src.imageData[
                                                        src.widthStep * h +
                                                        w * src.nChannels + c]
                        else:
                            for c in range(src.nChannels):
                                remained_src.imageData[
                                    remained_src.widthStep * h +
                                    (w - slice_line.position) *
                                    remained_src.nChannels +
                                    c] = src.imageData[src.widthStep * h +
                                                       w * src.nChannels + c]
                for h in range(int(pixels.size()), src.height):
                    for w in range(src.width):
                        for c in range(src.nChannels):
                            remained_src.imageData[remained_src.widthStep * h +
                                                   w * remained_src.nChannels +
                                                   c] = src.imageData[
                                                       src.widthStep * h +
                                                       w * src.nChannels + c]

        if debug:
            cvDestroyWindow("[ separation ] slice_src")
            cvShowImage("[ separation ] slice_src", slice_src)
            cv.waitKey(0)
            cvDestroyWindow("[ separation ] remained_src")
            cvShowImage("[ separation ] remained_src", remained_src)
            cv.waitKey(0)

        #  // 保存しないで良い余白等はfalseを返す
        if self.is_blank(slice_src):
            return Response.DROP_SLICE_SRC
        if self.is_blank(remained_src):
            return Response.DROP_REMAINED_SRC

        threshold: float = 0.02
        if slice_src.width * slice_src.height < original_size * threshold:
            return Response.DROP_SLICE_SRC
        if remained_src.width * remained_src.height < original_size * threshold:
            return Response.DROP_REMAINED_SRC
        return Response.OK