def histeq(img): rh, rw, rc = img.shape gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img2 = None img2 = cv2.equalizeHist(gray) cv2.imshow('img', gray) cv2.imshow('img2', img2) cv2.waitKey(10000) cv2.destroyAllWindows()
def sharpen(img): rh, rw, rc = img.shape img2 = np.zeros((rh, rw, 3), dtype=np.uint8); kernel_size = 3 scale = 1 delta = 0 ddepth = cv2.CV_64F img2 = cv2.convertScaleAbs(cv2.Laplacian(img,ddepth,ksize = kernel_size,scale = scale,delta = delta)) sharpened = cv2.addWeighted(img, 1, img2, -0.5, 0) cv2.imshow('original img', img) cv2.imshow('sharpened img', sharpened) cv2.waitKey(5000) cv2.destroyAllWindows()
def show_face_body(img): xcrop_bias = 50 body_head_portion = 5 start = time.time() rh, rw, rc = img.shape gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) if y+h*2 > rh: continue crop_img = img[y+h:y+h*body_head_portion, x-xcrop_bias:x+w+xcrop_bias] cv2.rectangle(img, (x-xcrop_bias,y+h), (x+w+xcrop_bias, y+h*body_head_portion), (0, 255, 0), 2) #cv2.imwrite(img_path+'/'+f+'_'+str(ct)+'.jpg', crop_img) cv2.imshow('img',img) cv2.waitKey(1000) cv2.destroyAllWindows() end = time.time() print 'total time consumed: %d'%int(end - start)
def show_face_body(img): xcrop_bias = 50 body_head_portion = 5 start = time.time() rh, rw, rc = img.shape gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) if y + h * 2 > rh: continue crop_img = img[y + h:y + h * body_head_portion, x - xcrop_bias:x + w + xcrop_bias] cv2.rectangle(img, (x - xcrop_bias, y + h), (x + w + xcrop_bias, y + h * body_head_portion), (0, 255, 0), 2) #cv2.imwrite(img_path+'/'+f+'_'+str(ct)+'.jpg', crop_img) cv2.imshow('img', img) cv2.waitKey(1000) cv2.destroyAllWindows() end = time.time() print 'total time consumed: %d' % int(end - start)
print blurriness return blurriness def get_face_region(gray_frame): results = [] faces = face_cascade.detectMultiScale(gray_frame, 1.3, 5) for (x,y,w,h) in faces: results.append((x,y,w,h)) return results if __name__ == "__main__": parser = argparse.ArgumentParser(description='Test blurriness') parser.add_argument('image_path', metavar='image_path', help='path of the image that is to be calculated') args = parser.parse_args() img = cv2.imread(args.image_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = get_face_region(gray) for item in faces: x = item[0] y = item[1] w = item[2] h = item[3] cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) blurriness = get_blurriness(gray[y:y+h, x:x+w]) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img,'Blurriness:' + str(blurriness),(x,y), font, 1,(255,255,255),2) cv2.imshow('img',img) cv2.waitKey(5000) cv2.destroyAllWindows()
def get_face_region(gray_frame): results = [] faces = face_cascade.detectMultiScale(gray_frame, 1.3, 5) for (x, y, w, h) in faces: results.append((x, y, w, h)) return results if __name__ == "__main__": parser = argparse.ArgumentParser(description='Test blurriness') parser.add_argument('image_path', metavar='image_path', help='path of the image that is to be calculated') args = parser.parse_args() img = cv2.imread(args.image_path) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = get_face_region(gray) for item in faces: x = item[0] y = item[1] w = item[2] h = item[3] cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) blurriness = get_blurriness(gray[y:y + h, x:x + w]) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img, 'Blurriness:' + str(blurriness), (x, y), font, 1, (255, 255, 255), 2) cv2.imshow('img', img) cv2.waitKey(5000) cv2.destroyAllWindows()