def benchmark_train(args): cfg = setup(args) model = build_model(cfg) logger.info("Model:\n{}".format(model)) if comm.get_world_size() > 1: model = DistributedDataParallel(model, device_ids=[comm.get_local_rank()], broadcast_buffers=False) optimizer = build_optimizer(cfg, model) checkpointer = DefaultCheckpointer(model, optimizer=optimizer) checkpointer.load(cfg.MODEL.WEIGHTS) cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 data_loader = build_train_loader(cfg) dummy_data = list(itertools.islice(data_loader, 100)) def f(): while True: yield from DatasetFromList(dummy_data, copy=False) max_iter = 400 trainer = SimpleTrainer(model, f(), optimizer) trainer.register_hooks([ hooks.IterationTimer(), hooks.PeriodicWriter([CommonMetricPrinter(max_iter)]) ]) trainer.train(1, max_iter)
def build_train_loader(cls, cfg): """ Returns: iterable It now calls :func:`cvpods.data.build_train_loader`. Overwrite it if you'd like a different data loader.:w """ return build_train_loader(cfg)
def benchmark_data(args): cfg = setup(args) dataloader = build_train_loader(cfg) timer = Timer() itr = iter(dataloader) for i in range(10): # warmup next(itr) if i == 0: startup_time = timer.seconds() timer = Timer() max_iter = 1000 for _ in tqdm.trange(max_iter): next(itr) logger.info("{} iters ({} images) in {} seconds.".format( max_iter, max_iter * cfg.SOLVER.IMS_PER_BATCH, timer.seconds())) logger.info("Startup time: {} seconds".format(startup_time)) vram = psutil.virtual_memory() logger.info("RAM Usage: {:.2f}/{:.2f} GB".format( (vram.total - vram.available) / 1024**3, vram.total / 1024**3))
def do_train(cfg, model, resume=False): model.train() optimizer = build_optimizer(cfg, model) scheduler = build_lr_scheduler(cfg, optimizer) checkpointer = DefaultCheckpointer( model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler ) start_iter = ( checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1 ) max_iter = cfg.SOLVER.MAX_ITER periodic_checkpointer = PeriodicCheckpointer( checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter ) writers = ( [ CommonMetricPrinter(max_iter), JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")), TensorboardXWriter(cfg.OUTPUT_DIR), ] if comm.is_main_process() else [] ) # compared to "train_net.py", we do not support accurate timing and # precise BN here, because they are not trivial to implement data_loader = build_train_loader(cfg) logger.info("Starting training from iteration {}".format(start_iter)) with EventStorage(start_iter) as storage: for data, iteration in zip(data_loader, range(start_iter, max_iter)): iteration = iteration + 1 storage.step() loss_dict = model(data) losses = sum(loss for loss in loss_dict.values()) assert torch.isfinite(losses).all(), loss_dict loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()} losses_reduced = sum(loss for loss in loss_dict_reduced.values()) if comm.is_main_process(): storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced) optimizer.zero_grad() losses.backward() optimizer.step() storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False) scheduler.step() if ( cfg.TEST.EVAL_PERIOD > 0 and iteration % cfg.TEST.EVAL_PERIOD == 0 and iteration != max_iter ): do_test(cfg, model) # Compared to "train_net.py", the test results are not dumped to EventStorage comm.synchronize() if iteration - start_iter > 5 and (iteration % 20 == 0 or iteration == max_iter): for writer in writers: writer.write() periodic_checkpointer.step(iteration)
os.makedirs(dirname, exist_ok=True) metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0]) def output(vis, fname): if args.show: print(fname) cv2.imshow("window", vis.get_image()[:, :, ::-1]) cv2.waitKey() else: filepath = os.path.join(dirname, fname) print("Saving to {} ...".format(filepath)) vis.save(filepath) scale = 2.0 if args.show else 1.0 if args.source == "dataloader": train_data_loader = build_train_loader(cfg) for batch in train_data_loader: for per_image in batch: # Pytorch tensor is in (C, H, W) format img = per_image["image"].permute(1, 2, 0) if cfg.INPUT.FORMAT == "BGR": img = img[:, :, [2, 1, 0]] else: img = np.asarray( Image.fromarray(img, mode=cfg.INPUT.FORMAT).convert("RGB")) visualizer = Visualizer(img, metadata=metadata, scale=scale) target_fields = per_image["instances"].get_fields() labels = [ metadata.thing_classes[i]