def test_ecos_trivial_invpos(): x = cvx.Variable( (2), name='x') constraints = [x[0] >= 0] constraints += [x[1] >= x[0]] constraints += [x[1] >= cvx.inv_pos(x[0])] objective = x[1] objective = cvx.Minimize(objective) problem = cvx.Problem(objective, constraints) canon = Canonicalize(problem, verbose=True) canon.assign_values({}) solution = cvx.solve(canon, verbose = True) if solution: print('Solution obj:', solution['info']['pcost']) print('Solution x:', solution['x'][0:2]) assert( np.allclose(solution['x'][0:2], [1.0, 1.0]) ) reset_symbols()
def test_ecos_trivial_geomean(): x = cvx.Variable( (2), name='x') constraints = [x[0] >= 0] constraints += [x[1] <= cvx.geo_mean(x[0], 5)] constraints += [x[1] >= 5] objective = x[0] + x[1] # farthest down and left objective = cvx.Minimize(objective) problem = cvx.Problem(objective, constraints) canon = Canonicalize(problem, verbose=True) canon.assign_values({}) solution = cvx.solve(canon, verbose = True) if solution: print('Solution obj:', solution['info']['pcost']) print('Solution x:', solution['x'][0:2]) assert( np.allclose(solution['x'][0:2], [5.0, 5.0]) ) reset_symbols()
def test_ecos_leastsquares(): x = cvx.Variable (name='x') F = cvx.Parameter(name='F') g = cvx.Parameter(name='g') objective = cvx.square(cvx.norm( F*x - g )) objective = cvx.Minimize(objective) problem = cvx.Problem(objective, []) canon = Canonicalize(problem, verbose=True) # Set values of parameters parameters = { 'F' : 42, 'g' : 42, } canon.assign_values(parameters) solution = cvx.solve(canon, verbose = True) if solution: print('Solution obj:', solution['info']['pcost']) print('Solution x:', solution['x'][0]) assert( np.isclose(solution['x'][0], 1.0) ) reset_symbols()
def test_ecos_polyhedradist(): import cvx_sym as cvx n = 2 # number of dimensions m = 3 # number of lines defining polyhedron 1 p = 3 # number of lines defining polyhedron 2 x1 = cvx.Variable ((n,1),name='x1') x2 = cvx.Variable ((n,1),name='x2') A1 = cvx.Parameter((m,n),name='A1') A2 = cvx.Parameter((p,n),name='A2') B1 = cvx.Parameter((m,1),name='B1') B2 = cvx.Parameter((p,1),name='B2') objective = cvx.square(cvx.norm(x1 - x2)) constraints = [ A1[i,:].T * x1 <= B1[i] for i in range(m) ] constraints += [ A2[i,:].T * x2 <= B2[i] for i in range(p) ] objective = cvx.Minimize(objective) problem = cvx.Problem(objective, constraints) canon = Canonicalize(problem, verbose=True) # Set values of parameters parameters = { 'A1' : np.array([[-1,1],[1,1],[0,-1]]), 'B1' : np.array([[3],[3],[0]]), 'A2' : np.array([[.5,-1],[0,1],[+1,0]]), 'B2' : np.array([[-3],[3],[5]]), } canon.assign_values(parameters) solution = cvx.solve(canon, verbose = True) if solution: print('Solution obj:', solution['info']['pcost']) # Gather the OG solution variables v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn] x_solution = [solution['x'][i] for i in v_indices] print('Solution x:', x_solution) print('Solution vec:', solution['x']) # Solution is found at intersection of polyhedra assert( np.allclose(x_solution, [0,3, 0,3], atol=1e-4) ) # So therefore the objective should be near zero assert( np.allclose(solution['info']['pcost'], 0.0 ) ) reset_symbols()
def test_ecos_robustlp(): import cvx_sym as cvx n = 2 # number of dimensions m = 3 # number of elementwise elements x = cvx.Variable ((n,1),name='x') A = cvx.Parameter((m,n),name='A') B = cvx.Parameter((m,1),name='B') C = cvx.Parameter((n,1),name='C') P = cvx.Parameter((m,n),name='P') objective = C.T * x constraints = [A[i].T * x + cvx.norm(P[i].T * x) <= B[i] for i in range(m)] objective = cvx.Minimize(objective) problem = cvx.Problem(objective, constraints) canon = Canonicalize(problem, verbose=True) # Set values of parameters parameters = { 'A' : np.array([[1,1],[1,1],[1,1]]), 'B' : np.array([[3],[3],[3]]), 'C' : np.array([[.1],[.2]]), 'P' : np.array([[1,2],[3,4],[5,6]]) } canon.assign_values(parameters) solution = cvx.solve(canon, verbose = True) if solution: print('Solution obj:', solution['info']['pcost']) # Gather the OG solution variables v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn] x_solution = [solution['x'][i] for i in v_indices] print('Solution x:', x_solution) print('Solution vec:', solution['x']) assert( np.allclose(x_solution, [3,-3] ) ) reset_symbols()
def test_ecos_chebyshevcenter(): import cvx_sym as cvx n = 2 m = 3 r = cvx.Variable((1,1),name='r') x = cvx.Variable((n,1),name='x') A = cvx.Parameter((m,n),name='A') B = cvx.Parameter((m,1),name='B') objective = -r constraints = [A[i,:].T * x + r * cvx.norm(A[i,:]) <= B[i] for i in range(m)] constraints += [r >= 0] objective = cvx.Minimize(objective) problem = cvx.Problem(objective, constraints) canon = Canonicalize(problem, verbose=True) # Set values of parameters parameters = { 'A' : np.array([[-1,1],[1,1],[0,-1]]), 'B' : np.array([[3],[3],[0]]), } canon.assign_values(parameters) solution = cvx.solve(canon, verbose = True) if solution: print('Solution obj:', solution['info']['pcost']) # Gather the OG solution variables v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn] x_solution = [solution['x'][i] for i in v_indices] print('Solution x:', x_solution) print('Solution vec:', solution['x']) assert( np.allclose(x_solution, [0, 1.242641] ) ) reset_symbols()
def test_ecos_leastsquares_constr(): x = cvx.Variable ((3,1),name='x') F = cvx.Parameter((3,3),name='F') g = cvx.Parameter((3,1),name='g') U = cvx.Parameter((3,1),name='U') L = cvx.Parameter((3,1),name='L') constraints = [] objective = cvx.square(cvx.norm( F*x - g )) constraints += [ x <= U ] constraints += [ L <= x ] objective = cvx.Minimize(objective) problem = cvx.Problem(objective, constraints) canon = Canonicalize(problem, verbose=True) # Set values of parameters parameters = { 'F' : np.array([[1,2,3],[4,5,6],[7,8,9]]), 'g' : np.array([[1],[2],[3]]), 'U' : np.array([[42],[42],[42]]), 'L' : np.array([[1],[2],[3]]) } canon.assign_values(parameters) solution = cvx.solve(canon, verbose = True) if solution: print('Solution obj:', solution['info']['pcost']) # Gather the OG solution variables v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn] x_solution = [solution['x'][i] for i in v_indices] print('Solution x:', x_solution) print('Solution vec:', solution['x']) assert( np.allclose(x_solution, [1,2,3] ) ) reset_symbols()
def test_ecos_trivial_norm1(): x = cvx.Variable((3,1),name='x') constraints = [x >= -1] constraints += [x <= +1] objective = cvx.norm(x, kind=1) objective = cvx.Minimize(objective) problem = cvx.Problem(objective, constraints) canon = Canonicalize(problem, verbose=True) canon.assign_values({}) solution = cvx.solve(canon, verbose = True) if solution: print('Solution obj:', solution['info']['pcost']) print('Solution x:', solution['x']) assert( np.allclose(solution['x'][0:3], [0.0, 0.0, 0.0]) ) reset_symbols()
def full_scale_ecos_control(): """ Takes a long time to canonicalize, so don't run as routine test """ import cvx_sym as cvx n = 8 m = 2 T = 50 x = cvx.Variable((n, T+1), name='x') u = cvx.Variable((m, T), name='u') x_0 = cvx.Parameter((n,1), name='x_0') A = cvx.Parameter((n,n), name='A') B = cvx.Parameter((n,m), name='B') states = [] constraints = [ x[:,T] == 0 ] constraints += [ x[:,0] == x_0[:,0] ] for t in range(T): constraints += [ x[:,t+1] == A*x[:,t] + B*u[:,t] ] constraints += [ cvx.norm(u[:,t], kind = 'inf') <= 1 ] cost = cvx.sum_squares(x[:,t+1]) + cvx.sum_squares(u[:,t]) states.append( cost ) # sums problem objectives and concatenates constraints. objective = cvx.sum(states) objective = cvx.Minimize(objective) problem = cvx.Problem(objective, constraints) canon = Canonicalize(problem, verbose = 1 ) np.random.seed(1) alpha = 0.2 beta = 5 A_set = np.eye(n) + alpha*np.random.randn(n,n) B_set = np.random.randn(n,m) x_0_set = beta*np.random.randn(n,1) # Set values of parameters parameters = { 'A' : A_set, 'B' : B_set, 'x_0' : x_0_set, } canon.assign_values(parameters) solution = cvx.solve(canon, verbose = True) if solution: obj = solution['info']['pcost'] # Gather the OG solution variables v_indices = [n for n, vn in enumerate(canon.vars.keys()) if 'x' in vn] x_solution = [solution['x'][i] for i in v_indices] print('Solution obj:', obj) print('Solution x:', x_solution) print('Solution vec:', solution['x']) assert( np.isclose(obj, 64470.59019495451) ) reset_symbols()