def test_basic(self):
     import cvxopt
     a = cvxopt.matrix([1.0, 2.0, 3.0])
     assert list(a) == [1.0, 2.0, 3.0]
     b = cvxopt.matrix([3.0, -2.0, -1.0])
     c = cvxopt.spmatrix([1.0, -2.0, 3.0], [0, 2, 4], [1, 2, 4], (6, 5))
     d = cvxopt.spmatrix([1.0, 2.0, 5.0], [0, 1, 2], [0, 0, 0], (3, 1))
     e = cvxopt.mul(a, b)
     self.assertEqualLists(e, [3.0, -4.0, -3.0])
     self.assertAlmostEqualLists(list(cvxopt.div(a, b)),
                                 [1.0 / 3.0, -1.0, -3.0])
     self.assertAlmostEqual(cvxopt.div([1.0, 2.0, 0.25]), 2.0)
     self.assertEqualLists(list(cvxopt.min(a, b)), [1.0, -2.0, -1.0])
     self.assertEqualLists(list(cvxopt.max(a, b)), [3.0, 2.0, 3.0])
     self.assertEqual(cvxopt.max([1.0, 2.0]), 2.0)
     self.assertEqual(cvxopt.max(a), 3.0)
     self.assertEqual(cvxopt.max(c), 3.0)
     self.assertEqual(cvxopt.max(d), 5.0)
     self.assertEqual(cvxopt.min([1.0, 2.0]), 1.0)
     self.assertEqual(cvxopt.min(a), 1.0)
     self.assertEqual(cvxopt.min(c), -2.0)
     self.assertEqual(cvxopt.min(d), 1.0)
     self.assertEqual(len(c.imag()), 0)
     with self.assertRaises(OverflowError):
         cvxopt.matrix(1.0, (32780 * 4, 32780))
     with self.assertRaises(OverflowError):
         cvxopt.spmatrix(1.0, (0, 32780 * 4), (0, 32780)) + 1
Пример #2
0
 def test_basic(self):
     import cvxopt
     a = cvxopt.matrix([1.0,2.0,3.0])
     b = cvxopt.matrix([3.0,-2.0,-1.0])
     c = cvxopt.spmatrix([1.0,-2.0,3.0],[0,2,4],[1,2,4],(6,5))
     d = cvxopt.spmatrix([1.0,2.0,5.0],[0,1,2],[0,0,0],(3,1))
     self.assertEqualLists(list(cvxopt.mul(a,b)),[3.0,-4.0,-3.0])
     self.assertAlmostEqualLists(list(cvxopt.div(a,b)),[1.0/3.0,-1.0,-3.0])
     self.assertAlmostEqual(cvxopt.div([1.0,2.0,0.25]),2.0)
     self.assertEqualLists(list(cvxopt.min(a,b)),[1.0,-2.0,-1.0])
     self.assertEqualLists(list(cvxopt.max(a,b)),[3.0,2.0,3.0])
     self.assertEqual(cvxopt.max([1.0,2.0]),2.0)
     self.assertEqual(cvxopt.max(a),3.0)
     self.assertEqual(cvxopt.max(c),3.0)
     self.assertEqual(cvxopt.max(d),5.0)
     self.assertEqual(cvxopt.min([1.0,2.0]),1.0)
     self.assertEqual(cvxopt.min(a),1.0)
     self.assertEqual(cvxopt.min(c),-2.0)
     self.assertEqual(cvxopt.min(d),1.0)
Пример #3
0
	def F(x=None, z=None):
		if x is None:
			x0 = cv.matrix([(1.-float(k)/n)/(n-1)]*n*n,(n*n,1))
			for j in range(n):
				x0[j*n+j] = float(k)/n
			return (0,x0)
		if cv.min(x) < 0.: return None
		f = coef*x**h
		Df = cv.mul(h*coef,(x.T)**(h-1))
		if z is None: return (f,Df)
		H = cv.spdiag(cv.mul(z[0]*h*(h-1)*coef.T,x**(h-2)))
		return (f,Df,H)
Пример #4
0
 def test_basic(self):
     import cvxopt
     a = cvxopt.matrix([1.0,2.0,3.0])
     b = cvxopt.matrix([3.0,-2.0,-1.0])
     c = cvxopt.spmatrix([1.0,-2.0,3.0],[0,2,4],[1,2,4],(6,5))
     d = cvxopt.spmatrix([1.0,2.0,5.0],[0,1,2],[0,0,0],(3,1))
     self.assertEqualLists(list(cvxopt.mul(a,b)),[3.0,-4.0,-3.0])
     self.assertAlmostEqualLists(list(cvxopt.div(a,b)),[1.0/3.0,-1.0,-3.0])
     self.assertAlmostEqual(cvxopt.div([1.0,2.0,0.25]),2.0)
     self.assertEqualLists(list(cvxopt.min(a,b)),[1.0,-2.0,-1.0])
     self.assertEqualLists(list(cvxopt.max(a,b)),[3.0,2.0,3.0])
     self.assertEqual(cvxopt.max([1.0,2.0]),2.0)
     self.assertEqual(cvxopt.max(a),3.0)
     self.assertEqual(cvxopt.max(c),3.0)
     self.assertEqual(cvxopt.max(d),5.0)
     self.assertEqual(cvxopt.min([1.0,2.0]),1.0)
     self.assertEqual(cvxopt.min(a),1.0)
     self.assertEqual(cvxopt.min(c),-2.0)
     self.assertEqual(cvxopt.min(d),1.0)
     with self.assertRaises(OverflowError):
         cvxopt.matrix(1.0,(32780*4,32780))
     with self.assertRaises(OverflowError):
         cvxopt.spmatrix(1.0,(0,32780*4),(0,32780))+1
Пример #5
0
                    def KL(ww=None, zz=None):
                        if ww is None:
                            return 0, cvx.matrix(1., (self.k, 1))

                        if cvx.min(ww) <= 0.:
                            return None

                        xx = cvx.matrix(x.T)
                        HHww = HH * ww

                        kl = sum(
                            cvx.mul(xx,
                                    cvx.log(cvx.div(xx, HHww)) + HHww - xx))
                        Dkl = (ep.T - cvx.div(xx.T, HHww.T)) * HH

                        if zz is None:
                            return kl, Dkl

                        else:
                            D2kl = HH.T * cvx.spdiag(
                                cvx.div(zz[0] * xx, HHww**2)) * HH
                            return kl, Dkl, D2kl
Пример #6
0
def estimate_range(A, xl, xu):
    '''
    Estimate the range of Ax, where xl <= x <= xu
    Mathematically, the lower and upper bounds are:
    '''
    # Decide if A is sparse
    # if 'sp' in str(type(A)) or 'sparse' in str(type(A)):
    #    pass

    # Efficient, exploit the sparsity of A
    Apos = copy(A)
    Aneg = copy(A)

    # For sparse matrices
    Apos.V = cvxopt.max(Apos.V, 0)
    Aneg.V = cvxopt.min(Aneg.V, 0)
    #    pdb.set_trace()
    bl = Apos * xl + Aneg * xu
    bu = Apos * xu + Aneg * xl

    # Relatively efficient, but dense matrix means overhead
    # bl = cvxopt.min(A,0)*xu + cvxopt.max(A,0)*xl
    # bu = cvxopt.min(A,0)*xl + cvxopt.max(A,0)*xu

    # This version is less efficient
    # row, col = A.size
    # bl = matrix(10.0,size=(row,1))
    # bu = matrix(10.0,size=(row,1))
    # for i in range(row):
    #     for j in range(col):
    #         if A[i,j] > 0.0:
    #             bl[i] += A[i,j]*xl[j]
    #             bu[i] += A[i,j]*xu[j]
    #         elif A[i] < 0.0:
    #             print A.size, xl.size, xu.size, i,j
    #             bl[i] += A[i,j]*xu[j]
    #             bu[i] += A[i,j]*xl[j]

    return (bl, bu)