def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ # TODO use log for n != 2. v = lu.create_var((1, 1)) x = arg_objs[0] y = arg_objs[1] two = lu.create_const(2, (1, 1)) # SOC(x + y, [y - x, 2*v]) constraints = [ SOC(lu.sum_expr([x, y]), [lu.sub_expr(y, x), lu.mul_expr(two, v, (1, 1))]) ] # 0 <= x, 0 <= y constraints += [lu.create_geq(x), lu.create_geq(y)] return (v, constraints)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ # Promote scalars. for idx, arg in enumerate(arg_objs): if arg.size != size: arg_objs[idx] = lu.promote(arg, size) x = arg_objs[0] y = arg_objs[1] v = lu.create_var(x.size) two = lu.create_const(2, (1, 1)) # SOC(x + y, [y - x, 2*v]) constraints = [ SOC_Elemwise(lu.sum_expr([x, y]), [lu.sub_expr(y, x), lu.mul_expr(two, v, v.size)]) ] # 0 <= x, 0 <= y constraints += [lu.create_geq(x), lu.create_geq(y)] return (v, constraints)
def format(self): """Formats SOC constraints as inequalities for the solver. """ constraints = [lu.create_geq(self.t)] for elem in self.x_elems: constraints.append(lu.create_geq(elem)) return constraints
def __SCS_format(self): eq_constr = self._get_eq_constr() term = self._scaled_lower_tri() if self.constr_id is None: leq_constr = lu.create_geq(term) else: leq_constr = lu.create_geq(term, constr_id=self.constr_id) return ([eq_constr], [leq_constr])
def __format(self): """Internal version of format with cached results. Returns ------- tuple (equality constraints, inequality constraints) """ leq_constr = [lu.create_geq(self.t)] for elem in self.x_elems: leq_constr.append(lu.create_geq(elem)) return ([], leq_constr)
def __CVXOPT_format(self): """Internal version of format with cached results. Returns ------- tuple (equality constraints, inequality constraints) """ eq_constr = self._get_eq_constr() if self.constr_id is None: leq_constr = lu.create_geq(self.A) else: leq_constr = lu.create_geq(self.A, constr_id=self.constr_id) return ([eq_constr], [leq_constr])
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] y = arg_objs[1] # Known to be a scalar. v = lu.create_var((1, 1)) two = lu.create_const(2, (1, 1)) constraints = [SOC(lu.sum_expr([y, v]), [lu.sub_expr(y, v), lu.mul_expr(two, x, x.size)]), lu.create_geq(y)] return (v, constraints)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] y = arg_objs[1] # Known to be a scalar. v = lu.create_var((1, 1)) two = lu.create_const(2, (1, 1)) constraints = [ SOC(lu.sum_expr([y, v]), [lu.sub_expr(y, v), lu.mul_expr(two, x, x.size)]), lu.create_geq(y) ] return (v, constraints)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ # min sum_entries(t) + kq # s.t. x <= t + q # 0 <= t x = arg_objs[0] k = lu.create_const(data[0], (1, 1)) q = lu.create_var((1, 1)) t = lu.create_var(x.size) sum_t, constr = sum_entries.graph_implementation([t], (1, 1)) obj = lu.sum_expr([sum_t, lu.mul_expr(k, q, (1, 1))]) prom_q = lu.promote(q, x.size) constr.append(lu.create_leq(x, lu.sum_expr([t, prom_q]))) constr.append(lu.create_geq(t)) return (obj, constr)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] w = lu.create_var(size) v = lu.create_var(size) two = lu.create_const(2, (1, 1)) # w**2 + 2*v obj, constraints = square.graph_implementation([w], size) obj = lu.sum_expr([obj, lu.mul_expr(two, v, size)]) # x <= w + v constraints.append(lu.create_leq(x, lu.sum_expr([w, v]))) # v >= 0 constraints.append(lu.create_geq(v)) return (obj, constraints)
def qol_elemwise(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] y = arg_objs[1] t = lu.create_var(x.size) two = lu.create_const(2, (1, 1)) constraints = [ SOC_Elemwise( lu.sum_expr([y, t]), [lu.sub_expr(y, t), lu.mul_expr(two, x, x.size)]), lu.create_geq(y) ] return (t, constraints)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] t = lu.create_var((1, 1)) promoted_t = lu.promote(t, x.size) constraints = [ lu.create_geq(lu.sum_expr([x, promoted_t])), lu.create_leq(x, promoted_t) ] return (t, constraints)
def qol_elemwise(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] y = arg_objs[1] t = lu.create_var(x.size) two = lu.create_const(2, (1, 1)) constraints = [SOC_Elemwise(lu.sum_expr([y, t]), [lu.sub_expr(y, t), lu.mul_expr(two, x, x.size)]), lu.create_geq(y)] return (t, constraints)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] y = arg_objs[1] t = lu.create_var((1, 1)) constraints = [ExpCone(t, x, y), lu.create_geq(y)] # 0 <= y # -t - x + y obj = lu.sub_expr(y, lu.sum_expr([x, t])) return (obj, constraints)
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ # min sum_entries(t) + kq # s.t. x <= t + q # 0 <= t x = arg_objs[0] k = lu.create_const(data[0], (1, 1)) q = lu.create_var((1, 1)) t = lu.create_var(x.size) sum_t, constr = sum_entries.graph_implementation([t], (1, 1)) obj = lu.sum_expr([sum_t, lu.mul_expr(k, q, (1, 1))]) prom_q = lu.promote(q, x.size) constr.append( lu.create_leq(x, lu.sum_expr([t, prom_q])) ) constr.append( lu.create_geq(t) ) return (obj, constr)
def __format(self): """Internal version of format with cached results. Returns ------- tuple (equality constraints, inequality constraints) """ leq_constr = lu.create_geq(self.expr, constr_id=self.constr_id) return [leq_constr]
def format(self, eq_constr, leq_constr, dims, solver): """Formats SOC constraints as inequalities for the solver. Parameters ---------- eq_constr : list A list of the equality constraints in the canonical problem. leq_constr : list A list of the inequality constraints in the canonical problem. dims : dict A dict with the dimensions of the conic constraints. solver : str The solver being called. """ leq_constr.append(lu.create_geq(self.t)) for elem in self.x_elems: leq_constr.append(lu.create_geq(elem)) # Update dims. dims[s.SOC_DIM].append(self.size[0])
def constraints(self): obj, constraints = super(BoolVar, self).canonicalize() one = lu.create_const(1, (1, 1)) constraints += [lu.create_geq(obj), lu.create_leq(obj, one)] for i in range(self.size[0]): row_sum = lu.sum_expr([self[i, j] for j in range(self.size[0])]) col_sum = lu.sum_expr([self[j, i] for j in range(self.size[0])]) constraints += [lu.create_eq(row_sum, one), lu.create_eq(col_sum, one)] return constraints
def __format(self): """Internal version of format with cached results. Returns ------- tuple (equality constraints, inequality constraints) """ eq_constr = lu.create_eq(self.A, lu.transpose(self.A)) leq_constr = lu.create_geq(self.A) return ([eq_constr], [leq_constr])
def constr_func(aff_obj): theta = [lu.create_var((1, 1)) for i in range(len(values))] convex_objs = [] for val, theta_var in zip(values, theta): val_aff = val.canonical_form[0] convex_objs.append( lu.mul_expr(val_aff, theta_var, val_aff.size)) convex_combo = lu.sum_expr(convex_objs) one = lu.create_const(1, (1, 1)) constraints = [ lu.create_eq(aff_obj, convex_combo), lu.create_eq(lu.sum_expr(theta), one) ] for theta_var in theta: constraints.append(lu.create_geq(theta_var)) return constraints
def constr_func(aff_obj): theta = [lu.create_var((1, 1)) for i in xrange(len(values))] convex_objs = [] for val, theta_var in zip(values, theta): val_aff = val.canonical_form[0] convex_objs.append( lu.mul_expr(val_aff, theta_var, val_aff.size) ) convex_combo = lu.sum_expr(convex_objs) one = lu.create_const(1, (1, 1)) constraints = [lu.create_eq(aff_obj, convex_combo), lu.create_eq(lu.sum_expr(theta), one)] for theta_var in theta: constraints.append(lu.create_geq(theta_var)) return constraints
def format_axis(t, X, axis): """Formats all the row/column cones for the solver. Parameters ---------- t: The scalar part of the second-order constraint. X: A matrix whose rows/columns are each a cone. axis: Slice by column 0 or row 1. Returns ------- list A list of LinLeqConstr that represent all the elementwise cones. """ # Reduce to norms of columns. if axis == 1: X = lu.transpose(X) # Create matrices Tmat, Xmat such that Tmat*t + Xmat*X # gives the format for the elementwise cone constraints. cone_size = 1 + X.shape[0] terms = [] # Make t_mat mat_shape = (cone_size, 1) t_mat = sp.coo_matrix(([1.0], ([0], [0])), mat_shape).tocsc() t_mat = lu.create_const(t_mat, mat_shape, sparse=True) t_vec = t if not t.shape: # t is scalar t_vec = lu.reshape(t, (1, 1)) else: # t is 1D t_vec = lu.reshape(t, (1, t.shape[0])) mul_shape = (cone_size, t_vec.shape[1]) terms += [lu.mul_expr(t_mat, t_vec, mul_shape)] # Make X_mat if len(X.shape) == 1: X = lu.reshape(X, (X.shape[0], 1)) mat_shape = (cone_size, X.shape[0]) val_arr = (cone_size - 1) * [1.0] row_arr = list(range(1, cone_size)) col_arr = list(range(cone_size - 1)) X_mat = sp.coo_matrix((val_arr, (row_arr, col_arr)), mat_shape).tocsc() X_mat = lu.create_const(X_mat, mat_shape, sparse=True) mul_shape = (cone_size, X.shape[1]) terms += [lu.mul_expr(X_mat, X, mul_shape)] return [lu.create_geq(lu.sum_expr(terms))]
def graph_implementation(arg_objs,size,data=None): x = arg_objs[0] beta,x0 = data[0],data[1] beta_val,x0_val = beta.value,x0.value if isinstance(beta,Parameter): beta = lu.create_param(beta,(1,1)) else: beta = lu.create_const(beta.value,(1,1)) if isinstance(x0,Parameter): x0 = lu.create_param(x0,(1,1)) else: x0 = lu.create_const(x0.value,(1,1)) xi,psi = lu.create_var(size),lu.create_var(size) one = lu.create_const(1,(1,1)) one_over_beta = lu.create_const(1/beta_val,(1,1)) k = np.exp(-beta_val*x0_val) k = lu.create_const(k,(1,1)) # 1/beta * (1 - exp(-beta*(xi+x0))) xi_plus_x0 = lu.sum_expr([xi,x0]) minus_beta_times_xi_plus_x0 = lu.neg_expr(lu.mul_expr(beta,xi_plus_x0,size)) exp_xi,constr_exp = exp.graph_implementation([minus_beta_times_xi_plus_x0],size) minus_exp_minus_etc = lu.neg_expr(exp_xi) left_branch = lu.mul_expr(one_over_beta, lu.sum_expr([one,minus_exp_minus_etc]),size) # psi*exp(-beta*r0) right_branch = lu.mul_expr(k,psi,size) obj = lu.sum_expr([left_branch,right_branch]) #x-x0 == xi + psi, xi >= 0, psi <= 0 zero = lu.create_const(0,size) constraints = constr_exp prom_x0 = lu.promote(x0, size) constraints.append(lu.create_eq(x,lu.sum_expr([prom_x0,xi,psi]))) constraints.append(lu.create_geq(xi,zero)) constraints.append(lu.create_leq(psi,zero)) return (obj, constraints)
def format(self, eq_constr, leq_constr, dims, solver): """Formats SDP constraints as inequalities for the solver. Parameters ---------- eq_constr : list A list of the equality constraints in the canonical problem. leq_constr : list A list of the inequality constraints in the canonical problem. dims : dict A dict with the dimensions of the conic constraints. solver : str The solver being called. """ # A == A.T eq_constr.append(lu.create_eq(self.A, lu.transpose(self.A))) # 0 <= A leq_constr.append(lu.create_geq(self.A)) # Update dims. dims[s.EQ_DIM] += self.size[0]*self.size[1] dims[s.SDP_DIM].append(self.size[0])
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] t = lu.create_var(size) # x >= 0 implied by x >= t^2. obj, constraints = square.graph_implementation([t], size) return (t, constraints + [lu.create_leq(obj, x), lu.create_geq(t)])
def graph_implementation(arg_objs, size, data=None): """Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) """ x = arg_objs[0] t = lu.create_var((1, 1)) promoted_t = lu.promote(t, x.size) constraints = [lu.create_geq(lu.sum_expr([x, promoted_t])), lu.create_leq(x, promoted_t)] return (t, constraints)
def format_axis(t, X, axis): """Formats all the row/column cones for the solver. Parameters ---------- t: The scalar part of the second-order constraint. X: A matrix whose rows/columns are each a cone. axis: Slice by column 0 or row 1. Returns ------- list A list of LinLeqConstr that represent all the elementwise cones. """ # Reduce to norms of columns. if axis == 1: X = lu.transpose(X) # Create matrices Tmat, Xmat such that Tmat*t + Xmat*X # gives the format for the elementwise cone constraints. num_cones = t.size[0] cone_size = 1 + X.size[0] terms = [] # Make t_mat mat_size = (cone_size, 1) prod_size = (cone_size, t.size[0]) t_mat = sp.coo_matrix(([1.0], ([0], [0])), mat_size).tocsc() t_mat = lu.create_const(t_mat, mat_size, sparse=True) terms += [lu.mul_expr(t_mat, lu.transpose(t), prod_size)] # Make X_mat mat_size = (cone_size, X.size[0]) prod_size = (cone_size, X.size[1]) val_arr = (cone_size - 1)*[1.0] row_arr = range(1, cone_size) col_arr = range(cone_size-1) X_mat = sp.coo_matrix((val_arr, (row_arr, col_arr)), mat_size).tocsc() X_mat = lu.create_const(X_mat, mat_size, sparse=True) terms += [lu.mul_expr(X_mat, X, prod_size)] return [lu.create_geq(lu.sum_expr(terms))]
def format_elemwise(vars_): """Formats all the elementwise cones for the solver. Parameters ---------- vars_ : list A list of the LinOp expressions in the elementwise cones. Returns ------- list A list of LinLeqConstr that represent all the elementwise cones. """ # Create matrices Ai such that 0 <= A0*x0 + ... + An*xn # gives the format for the elementwise cone constraints. spacing = len(vars_) # Matrix spaces out columns of the LinOp expressions. mat_shape = (spacing * vars_[0].shape[0], vars_[0].shape[0]) terms = [] for i, var in enumerate(vars_): mat = get_spacing_matrix(mat_shape, spacing, i) terms.append(lu.mul_expr(mat, var)) return [lu.create_geq(lu.sum_expr(terms))]
def format_elemwise(vars_): """Formats all the elementwise cones for the solver. Parameters ---------- vars_ : list A list of the LinOp expressions in the elementwise cones. Returns ------- list A list of LinLeqConstr that represent all the elementwise cones. """ # Create matrices Ai such that 0 <= A0*x0 + ... + An*xn # gives the format for the elementwise cone constraints. spacing = len(vars_) prod_size = (spacing*vars_[0].size[0], vars_[0].size[1]) # Matrix spaces out columns of the LinOp expressions. mat_size = (spacing*vars_[0].size[0], vars_[0].size[0]) terms = [] for i, var in enumerate(vars_): mat = get_spacing_matrix(mat_size, spacing, i) terms.append(lu.mul_expr(mat, var, prod_size)) return [lu.create_geq(lu.sum_expr(terms))]
def format(self): """Formats SDP constraints as inequalities for the solver. """ # 0 <= A return [lu.create_geq(self.A)]
def graph_implementation(arg_objs, size, data=None): r"""Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) Notes ----- Implementation notes. For general ``p``, the p-norm is equivalent to the following convex inequalities: .. math:: x_i &\leq r_i\\ -x_i &\leq r_i\\ r_i &\leq s_i^{1/p} t^{1 - 1/p}\\ \sum_i s_i &\leq t, where :math:`p \geq 1`. These inequalities are also correct for :math:`p = +\infty` if we interpret :math:`1/\infty` as :math:`0`. Although the inequalities above are correct, for a few special cases, we can represent the p-norm more efficiently and with fewer variables and inequalities. - For :math:`p = 1`, we use the representation .. math:: x_i &\leq r_i\\ -x_i &\leq r_i\\ \sum_i r_i &\leq t - For :math:`p = \infty`, we use the representation .. math:: x_i &\leq t\\ -x_i &\leq t Note that we don't need the :math:`s` variables or the sum inequality. - For :math:`p = 2`, we use the natural second-order cone representation .. math:: \|x\|_2 \leq t Note that we could have used the set of inequalities given above if we wanted an alternate decomposition of a large second-order cone into into several smaller inequalities. """ p, w = data x = arg_objs[0] t = None # dummy value so linter won't complain about initialization if p != 1: t = lu.create_var((1, 1)) if p == 2: return t, [SOC(t, [x])] if p == np.inf: r = lu.promote(t, x.size) else: r = lu.create_var(x.size) constraints = [lu.create_geq(lu.sum_expr([x, r])), lu.create_leq(x, r)] if p == 1: return lu.sum_entries(r), constraints if p == np.inf: return t, constraints # otherwise do case of general p s = lu.create_var(x.size) # todo: no need to run gm_constr to form the tree each time. we only need to form the tree once constraints += gm_constrs(r, [s, lu.promote(t, x.size)], w) constraints += [lu.create_leq(lu.sum_entries(s), t)] return t, constraints
def canonicalize(self): obj, constraints = super(BoolVar, self).canonicalize() one = lu.create_const(1, (1, 1)) constraints += [lu.create_geq(obj), lu.create_leq(obj, one)] return (obj, constraints)
def graph_implementation(arg_objs, size, data=None): r"""Reduces the atom to an affine expression and list of constraints. Parameters ---------- arg_objs : list LinExpr for each argument. size : tuple The size of the resulting expression. data : Additional data required by the atom. Returns ------- tuple (LinOp for objective, list of constraints) Notes ----- Implementation notes. - For general :math:`p \geq 1`, the inequality :math:`\|x\|_p \leq t` is equivalent to the following convex inequalities: .. math:: |x_i| &\leq r_i^{1/p} t^{1 - 1/p}\\ \sum_i r_i &= t. These inequalities happen to also be correct for :math:`p = +\infty`, if we interpret :math:`1/\infty` as :math:`0`. - For general :math:`0 < p < 1`, the inequality :math:`\|x\|_p \geq t` is equivalent to the following convex inequalities: .. math:: r_i &\leq x_i^{p} t^{1 - p}\\ \sum_i r_i &= t. - For general :math:`p < 0`, the inequality :math:`\|x\|_p \geq t` is equivalent to the following convex inequalities: .. math:: t &\leq x_i^{-p/(1-p)} r_i^{1/(1 - p)}\\ \sum_i r_i &= t. Although the inequalities above are correct, for a few special cases, we can represent the p-norm more efficiently and with fewer variables and inequalities. - For :math:`p = 1`, we use the representation .. math:: x_i &\leq r_i\\ -x_i &\leq r_i\\ \sum_i r_i &= t - For :math:`p = \infty`, we use the representation .. math:: x_i &\leq t\\ -x_i &\leq t Note that we don't need the :math:`r` variable or the sum inequality. - For :math:`p = 2`, we use the natural second-order cone representation .. math:: \|x\|_2 \leq t Note that we could have used the set of inequalities given above if we wanted an alternate decomposition of a large second-order cone into into several smaller inequalities. """ p = data[0] x = arg_objs[0] t = lu.create_var((1, 1)) constraints = [] # first, take care of the special cases of p = 2, inf, and 1 if p == 2: return t, [SOC(t, [x])] if p == np.inf: t_ = lu.promote(t, x.size) return t, [lu.create_leq(x, t_), lu.create_geq(lu.sum_expr([x, t_]))] # we need an absolute value constraint for the symmetric convex branches (p >= 1) # we alias |x| as x from this point forward to make the code pretty :) if p >= 1: absx = lu.create_var(x.size) constraints += [lu.create_leq(x, absx), lu.create_geq(lu.sum_expr([x, absx]))] x = absx if p == 1: return lu.sum_entries(x), constraints # now, we take care of the remaining convex and concave branches # to create the rational powers, we need a new variable, r, and # the constraint sum(r) == t r = lu.create_var(x.size) t_ = lu.promote(t, x.size) constraints += [lu.create_eq(lu.sum_entries(r), t)] # make p a fraction so that the input weight to gm_constrs # is a nice tuple of fractions. p = Fraction(p) if p < 0: constraints += gm_constrs(t_, [x, r], (-p / (1 - p), 1 / (1 - p))) if 0 < p < 1: constraints += gm_constrs(r, [x, t_], (p, 1 - p)) if p > 1: constraints += gm_constrs(x, [r, t_], (1 / p, 1 - 1 / p)) return t, constraints
def canonicalize(self): obj, constraints = super(Boolean, self).canonicalize() one = lu.create_const(np.ones(self.size), self.size) constraints += [lu.create_geq(obj), lu.create_leq(obj, one)] return (obj, constraints)
def __SCS_format(self): eq_constr = self._get_eq_constr() term = self._scaled_lower_tri() leq_constr = lu.create_geq(term) return ([eq_constr], [leq_constr])
def canonicalize(self): """Enforce that var >= 0. """ obj, constr = super(NonNegative, self).canonicalize() return (obj, constr + [lu.create_geq(obj)])