def result_dicts(some_mids,some_quotes,expiration_dict,trade_date,expiries): vol_results = dict() money_results = dict() dte_info = dict() #could be appended to expiry info but... basis_info = dict() #loop through all your expiries # -- append basis to your weighted mids table (we'll store this later) # -- store vols/moneyness info into dicts temporarily for exp in expiries: und_expiry_code = underlying_code_by_two_digit_code(exp) und_sym = underlying_code(und_expiry_code,underlyings(some_quotes)).values[0] exp_dte = dte(exp,trade_date,expiration_dict) print 'Expiry : ', exp, ' :: Corresponding Underlying: ',und_sym ,' :: DTE: ', exp_dte basis_code = exp+'-'+und_expiry_code+'-'+str(exp_dte) if und_expiry_code == exp: #quarterly spot_filtered = pd.Series(some_mids[und_sym].values,index=some_mids.index) syn_spread = pd.Series(np.zeros(len(spot_filtered)),index=some_mids.index) else: spot = synthetic_offset(exp,und_sym,some_mids) if len(spot.valid()) == 0: #we were never able to calculate a synthetic basis and thus can't calc underlying continue syn_spread = univariate_kf(spot.values,spot[spot.first_valid_index()],1,500) spot_filtered = pd.Series(syn_spread+some_mids[und_sym].values,index=spot.index) some_mids[basis_code] = spot_filtered vol_results[exp] = imp_vols_cython(some_mids.ix[:,options_expiry_mask(some_mids.columns,exp).values],spot_filtered,exp_dte) money_results[exp] = pd.DataFrame(altmoneys(spot_filtered.fillna(method='ffill').fillna(method='bfill').values, kospi_strikes_from_symbols(vol_results[exp].columns.values).values,exp_dte/260.0), index = some_mids.index, columns = vol_results[exp].columns) dte_info[exp] = exp_dte basis_info[exp] = pd.Series(syn_spread,index=spot.index) return [vol_results,money_results,dte_info,basis_info]
def kf_vols(raw): simple_kf = raw.copy() for c in simple_kf.columns: dex = simple_kf[c].first_valid_index() if dex: seed = simple_kf[c][dex] simple_kf[c] = univariate_kf(simple_kf[c].values,seed,seed/1000.,seed/10.) return simple_kf
def splined_kf_residualized(raw,simple_kf_vols,moneys): splined_kf_vols = crs.crs_vols(simple_kf_vols,moneys,deltas=np.array([])) splined_kf_adjusted = splined_kf_vols.copy() for c in splined_kf_vols.columns: residuals = (raw[c] - splined_kf_vols[c]) filtered_residuals = univariate_kf(residuals.values,0,1,10000) splined_kf_adjusted[c] += filtered_residuals return splined_kf_adjusted