Пример #1
0
 def test_energy_contraction_ones_z2(self):
     mpiprint(
         0, '\n' + '=' * 50 +
         '\nPeps Energy (Ham=Identity, peps=ones, Z2 symmetry) calculation\n'
         + '-' * 50)
     # Create a PEPS
     from cyclopeps.tools.peps_tools import PEPS
     Nx = 2
     Ny = 2
     d = 2
     D = 3
     Zn = 2
     backend = 'numpy'
     peps = PEPS(Nx=Nx,
                 Ny=Ny,
                 d=d,
                 D=D,
                 chi=1000,
                 Zn=2,
                 backend=backend,
                 normalize=False)
     # Set all tensor values to 1
     for xind in range(Nx):
         for yind in range(Ny):
             peps[xind][yind].fill_all(1.)
     # Get the Hamiltonian
     from cyclopeps.ops.identity import return_op
     ham = return_op(Nx, Ny, sym='Z2', backend=backend)
     # Calculate initial norm
     norm0 = peps.calc_norm() * 4.
     mpiprint(0, 'Norm (routine) = {}'.format(norm0))
     # Perform the Exact energy calculation:
     bra = einsum('LDWCM,lMXcu->LDluWXCc', peps[0][0],
                  peps[0][1]).remove_empty_ind(0).remove_empty_ind(
                      0).remove_empty_ind(0).remove_empty_ind(0)
     bra = einsum('WXCc,CdYRm->dRWXYcm', bra,
                  peps[1][0]).remove_empty_ind(0).remove_empty_ind(0)
     bra = einsum('WXYcm,cmZru->ruWXYZ', bra,
                  peps[1][1]).remove_empty_ind(0).remove_empty_ind(0)
     norm1 = einsum('WXYZ,WXYZ->', bra, bra.conj())
     norm1 = norm1 * 4.
     mpiprint(0, 'Norm (explicit) = {}'.format(norm1))
     tmp = einsum('WXYZ,wxYZ->WXwx', bra, bra.conj())
     E1 = einsum('WXwx,WXwx->', tmp, ham[0][0][0])
     tmp = einsum('WXYZ,wXyZ->WYwy', bra, bra.conj())
     E1 += einsum('WYwy,WYwy->', tmp, ham[1][0][0])
     tmp = einsum('WXYZ,WXyz->YZyz', bra, bra.conj())
     E1 += einsum('YZyz,YZyz->', tmp, ham[0][1][0])
     tmp = einsum('WXYZ,WxYz->XZxz', bra, bra.conj())
     E1 += einsum('XZxz,XZxz->', tmp, ham[1][1][0])
     mpiprint(0,
              'Explicitly computed energy (not normalized) = {}'.format(E1))
     # Contract Energy again
     E2 = peps.calc_op(ham, normalize=False)
     mpiprint(0, 'Energy via peps Method (not normalized) = {}'.format(E2))
     self.assertTrue(abs((norm0 - norm1) / norm0) < 1e-10)
     print('Check here {}, {}, {}, {}'.format(norm0, norm1, E1, E2))
     self.assertTrue(abs((norm0 - E1) / norm0) < 1e-10)
     self.assertTrue(abs((norm0 - E2) / norm0) < 1e-10)
     mpiprint(0, 'Passed\n' + '=' * 50)
Пример #2
0
 def test_energy_contraction_heis_z2(self):
     mpiprint(
         0, '\n' + '=' * 50 +
         '\nPeps Energy (Ham=Heisenberg, peps=random, Z2 symmetry) calculation\n'
         + '-' * 50)
     # Create a PEPS
     from cyclopeps.tools.peps_tools import PEPS
     Nx = 2
     Ny = 2
     d = 2
     D = 3
     Zn = 2
     backend = 'ctf'
     peps = PEPS(Nx=Nx,
                 Ny=Ny,
                 d=d,
                 D=D,
                 chi=1000,
                 Zn=2,
                 backend=backend,
                 normalize=False)
     # Get the Hamiltonian
     from cyclopeps.ops.heis import return_op
     ham = return_op(Nx, Ny, sym='Z2', backend=backend)
     # Calculate initial norm
     norm0 = peps.calc_norm()
     mpiprint(0, 'Norm (routine) = {}'.format(norm0))
     # Perform the Exact energy calculation:
     bra = einsum('LDWCM,lMXcu->LDluWXCc', peps[0][0],
                  peps[0][1]).remove_empty_ind(0).remove_empty_ind(
                      0).remove_empty_ind(0).remove_empty_ind(0)
     bra = einsum('WXCc,CdYRm->dRWXYcm', bra,
                  peps[1][0]).remove_empty_ind(0).remove_empty_ind(0)
     bra = einsum('WXYcm,cmZru->ruWXYZ', bra,
                  peps[1][1]).remove_empty_ind(0).remove_empty_ind(0)
     norm1 = einsum('WXYZ,WXYZ->', bra, bra.conj())
     norm1 = norm1
     mpiprint(0, 'Norm (explicit) = {}'.format(norm1))
     #print(ham[0][0][0])
     tmp = einsum('WXYZ,wxYZ->WXwx', bra, bra.conj())
     E1 = einsum('WXwx,WXwx->', tmp, ham[0][0][0])
     tmp = einsum('WXYZ,wXyZ->WYwy', bra, bra.conj())
     E1 += einsum('WYwy,WYwy->', tmp, ham[1][0][0])
     tmp = einsum('WXYZ,WXyz->YZyz', bra, bra.conj())
     E1 += einsum('YZyz,YZyz->', tmp, ham[0][1][0])
     tmp = einsum('WXYZ,WxYz->XZxz', bra, bra.conj())
     E1 += einsum('XZxz,XZxz->', tmp, ham[1][1][0])
     E1 = E1
     mpiprint(0,
              'Explicitly computed energy (not normalized) = {}'.format(E1))
     # Contract Energy again
     E2 = peps.calc_op(ham, normalize=False)
     mpiprint(0, 'Energy via peps Method (not normalized) = {}'.format(E2))
     self.assertTrue(abs((norm0 - norm1) / norm0) < 1e-10)
     self.assertTrue(abs((E2 - E1) / E1) < 1e-10)
     mpiprint(0, 'Passed\n' + '=' * 50)
Пример #3
0
 def test_energy_itf_contraction_ones(self):
     mpiprint(
         0, '\n' + '=' * 50 +
         '\nPeps Energy (Ham=ITF, peps=ones, no symmetry) calculation\n' +
         '-' * 50)
     # Create a PEPS
     from cyclopeps.tools.peps_tools import PEPS
     Nx = 2
     Ny = 2
     d = 2
     D = 3
     backend = 'ctf'
     peps = PEPS(Nx=Nx,
                 Ny=Ny,
                 d=d,
                 D=D,
                 chi=1000,
                 normalize=False,
                 backend=backend)
     # Set all tensor values to 1
     for xind in range(Nx):
         for yind in range(Ny):
             peps[xind][yind].fill_all(1.)
     # Get the Hamiltonian
     from cyclopeps.ops.itf import return_op
     ham = return_op(Nx, Ny, (1., 2.), backend=backend)
     # Calculate initial norm
     norm0 = peps.calc_norm()
     mpiprint(0, 'Norm = {}'.format(norm0))
     # Perform the Exact energy calculation:
     bra = einsum('LDWCM,lMXcu->WXCc', peps[0][0], peps[0][1])
     bra = einsum('WXCc,CdYRm->WXYcm', bra, peps[1][0])
     bra = einsum('WXYcm,cmZru->WXYZ', bra, peps[1][1])
     norm1 = einsum('WXYZ,WXYZ->', bra, bra.conj())
     mpiprint(0, 'Explicitly computed norm = {}'.format(norm1))
     tmp = einsum('WXYZ,wxYZ->WXwx', bra, bra.conj())
     E1 = einsum('WXwx,WXwx->', tmp, ham[0][0][0])
     tmp = einsum('WXYZ,wXyZ->WYwy', bra, bra.conj())
     E1 += einsum('WYwy,WYwy->', tmp, ham[1][0][0])
     tmp = einsum('WXYZ,WXyz->YZyz', bra, bra.conj())
     E1 += einsum('YZyz,YZyz->', tmp, ham[0][1][0])
     tmp = einsum('WXYZ,WxYz->XZxz', bra, bra.conj())
     E1 += einsum('XZxz,XZxz->', tmp, ham[1][1][0])
     mpiprint(0,
              'Explicitly computed energy (not normalized) = {}'.format(E1))
     # Contract Energy again
     E2 = peps.calc_op(ham, normalize=False)
     mpiprint(0, 'Energy (routine) = {}'.format(E2))
     self.assertTrue(abs((E2 - E1) / E1) < 1e-10)
     mpiprint(0, 'Passed\n' + '=' * 50)
Пример #4
0
 def test_energy_contraction(self):
     mpiprint(
         0, '\n' + '=' * 50 +
         '\nPeps Energy (Ham=Identity, peps=random, no symmetry) calculation\n'
         + '-' * 50)
     # Create a PEPS
     from cyclopeps.tools.peps_tools import PEPS
     Nx = 2
     Ny = 2
     d = 2
     D = 3
     backend = 'ctf'
     peps = PEPS(Nx=Nx, Ny=Ny, d=d, D=D, chi=1000, backend=backend)
     # Get the Hamiltonian
     from cyclopeps.ops.identity import return_op
     ham = return_op(Nx, Ny, backend=backend)
     # Calculate initial norm
     norm0 = peps.calc_norm() * 4.
     # Perform the Exact energy calculation:
     bra = einsum('LDWCM,lMXcu->WXCc', peps[0][0], peps[0][1])
     bra = einsum('WXCc,CdYRm->WXYcm', bra, peps[1][0])
     bra = einsum('WXYcm,cmZru->WXYZ', bra, peps[1][1])
     norm1 = einsum('WXYZ,WXYZ->', bra, bra.conj()) * 4.
     tmp = einsum('WXYZ,wxYZ->WXwx', bra, bra.conj())
     E1 = einsum('WXwx,WXwx->', tmp, ham[0][0][0])
     tmp = einsum('WXYZ,wXyZ->WYwy', bra, bra.conj())
     E1 += einsum('WYwy,WYwy->', tmp, ham[1][0][0])
     tmp = einsum('WXYZ,WXyz->YZyz', bra, bra.conj())
     E1 += einsum('YZyz,YZyz->', tmp, ham[0][1][0])
     tmp = einsum('WXYZ,WxYz->XZxz', bra, bra.conj())
     E1 += einsum('XZxz,XZxz->', tmp, ham[1][1][0])
     # Contract Energy again
     E2 = peps.calc_op(ham, normalize=False)
     self.assertTrue(abs((norm0 - norm1) / norm0) < 1e-10)
     mpiprint(0, 'Passed Norm1')
     self.assertTrue(abs((norm0 - E1) / norm0) < 1e-10)
     mpiprint(0, 'Passed E1')
     mpiprint(0, 'Norm from calc_norm = {}'.format(norm0))
     mpiprint(0, 'Norm from exact contraction {}'.format(norm1))
     mpiprint(0, 'Norm from Energy calc op = {}'.format(E2))
     mpiprint(0, 'Norm from Energy exact contraction {}'.format(E1))
     #mpiprint(0,norm1,E1,norm0,E2,abs((norm0-E2)/norm0))
     self.assertTrue(abs((norm0 - E2) / norm0) < 1e-10)
     mpiprint(0, 'Passed\n' + '=' * 50)
Пример #5
0
 def test_energy_itf_contraction(self):
     mpiprint(
         0, '\n' + '=' * 50 +
         '\nPeps Energy (Ham=ITF, peps=random, no symmetry) calculation\n' +
         '-' * 50)
     # Create a PEPS
     from cyclopeps.tools.peps_tools import PEPS
     Nx = 2
     Ny = 2
     d = 2
     D = 3
     backend = 'ctf'
     peps = PEPS(Nx=Nx, Ny=Ny, d=d, D=D, chi=1000, backend=backend)
     peps2 = PEPS(Nx=Nx, Ny=Ny, d=d, D=D, chi=1000, backend=backend)
     # Get the Hamiltonian
     from cyclopeps.ops.itf import return_op
     ham = return_op(Nx, Ny, (1., 2.), backend=backend)
     # Perform the Exact energy calculation:
     bra = einsum('LDWCM,lMXcu->WXCc', peps[0][0], peps[0][1])
     bra = einsum('WXCc,CdYRm->WXYcm', bra, peps[1][0])
     bra = einsum('WXYcm,cmZru->WXYZ', bra, peps[1][1])
     ket = einsum('LDWCM,lMXcu->WXCc', peps2[0][0], peps2[0][1])
     ket = einsum('WXCc,CdYRm->WXYcm', ket, peps2[1][0])
     ket = einsum('WXYcm,cmZru->WXYZ', ket, peps2[1][1])
     norm1 = einsum('WXYZ,WXYZ->', bra, ket)
     tmp = einsum('WXYZ,wxYZ->WXwx', bra, ket)
     E1 = einsum('WXwx,WXwx->', tmp, ham[0][0][0])
     tmp = einsum('WXYZ,wXyZ->WYwy', bra, ket)
     E2 = einsum('WYwy,WYwy->', tmp, ham[1][0][0])
     tmp = einsum('WXYZ,WXyz->YZyz', bra, ket)
     E3 = einsum('YZyz,YZyz->', tmp, ham[0][1][0])
     tmp = einsum('WXYZ,WxYz->XZxz', bra, ket)
     E4 = einsum('XZxz,XZxz->', tmp, ham[1][1][0])
     E1 = E1 + E2 + E3 + E4
     # Contract Energy again
     E2 = peps.calc_op(ham, normalize=False, chi=1e100, ket=peps2)
     mpiprint(0, 'Energy (exact)   = {}'.format(E1))
     mpiprint(0, 'Energy (routine) = {}'.format(E2))
     self.assertTrue(abs((E2 - E1) / E1) < 1e-10)
     mpiprint(0, 'Passed\n' + '=' * 50)