Пример #1
0
    def save(self, tile_indices, output_dir, data, compress=6):
        region_index, tile_index, tx, ty = tile_indices
        img_label, stats = data

        # Save label volumes if present (use compression as these are often highly redundant)
        label_tile_path = None
        if img_label is not None:
            label_tile_path = cytokit_io.get_cytometry_image_path(
                region_index, tx, ty)
            cytokit_io.save_tile(osp.join(output_dir, label_tile_path),
                                 img_label,
                                 config=self.config,
                                 compress=compress)

        # Save statistics if present
        stats_path = None
        if stats is not None:
            # Append useful metadata to cytometry stats (align these names to those used in config.TileDims)
            # and export as csv
            stats.insert(0, 'tile_y', ty)
            stats.insert(0, 'tile_x', tx)
            stats.insert(0, 'tile_index', tile_index)
            stats.insert(0, 'region_index', region_index)
            stats_path = cytokit_io.get_cytometry_stats_path(
                region_index, tx, ty)
            cytokit_io.save_csv(osp.join(output_dir, stats_path),
                                stats,
                                index=False)

        return label_tile_path, stats_path
Пример #2
0
def aggregate_cytometry_statistics(output_dir,
                                   config,
                                   mode='all',
                                   export_csv=True,
                                   export_fcs=True,
                                   variant=None):
    from cytokit.function import data as function_data

    # Aggregate all cytometry csv data (across tiles)
    res = function_data.get_cytometry_data(output_dir, config, mode=mode)

    # Get file extension, possibly with user-defined "variant" name to be included in all
    # resulting file names
    def ext(file_ext):
        return file_ext if variant is None else '{}.{}'.format(
            variant, file_ext)

    # Export result as csv
    csv_path, fcs_path = None, None
    if export_csv:
        csv_path = osp.join(output_dir,
                            cytokit_io.get_cytometry_agg_path(ext('csv')))
        cytokit_io.save_csv(csv_path, res, index=False)
        logger.info(
            'Saved cytometry aggregation results to csv at "{}"'.format(
                csv_path))
    if export_fcs:
        import re
        import fcswrite
        nonalnum = '[^0-9a-zA-Z]+'

        fcs_path = osp.join(output_dir,
                            cytokit_io.get_cytometry_agg_path(ext('fcs')))
        if len(res) > 0:
            # For FCS exports, save only integer and floating point values and replace any non-alphanumeric
            # column name characters with underscores
            res_fcs = res.select_dtypes(
                ['int',
                 'float']).rename(columns=lambda c: re.sub(nonalnum, '_', c))
            if not osp.exists(osp.dirname(fcs_path)):
                os.makedirs(osp.dirname(fcs_path), exist_ok=True)
            fcswrite.write_fcs(filename=fcs_path,
                               chn_names=res_fcs.columns.tolist(),
                               data=res_fcs.values)
            logger.info(
                'Saved cytometry aggregation results to fcs at "{}"'.format(
                    fcs_path))
        else:
            # fcswrite fails on writing empty datasets so log a warning instead
            logger.warning(
                'Skipping FCS export because no objects were detected')
    return csv_path, fcs_path