Пример #1
0
def test_quickshift_medoid_maps():
    i = img.copy()
    maps, gaps, estimate = quickshift(i,
                                      kernel_size=2,
                                      max_dist=10,
                                      medoid=True)
    assert maps.shape == (512, 512)
    assert_allclose(maps[0:5, 0], [514., 1026., 1026., 1538., 1538.],
                    rtol=1e-3)
Пример #2
0
def test_quickshift_medoid_estimate():
    i = img.copy()
    maps, gaps, estimate = quickshift(i,
                                      kernel_size=2,
                                      max_dist=10,
                                      medoid=True)
    assert estimate.shape == (512, 512)
    assert_allclose(estimate[0:5, 0], [8.699, 11.0754, 12.350, 12.322, 11.190],
                    rtol=1e-3)
Пример #3
0
def test_quickshift_rgb():
    result = quickshift(img_rgb,
                        kernel_size=4,
                        max_dist=24)
    assert result[0].dtype == np.float64
    assert result[1].dtype == np.float64
    assert result[2].dtype == np.float64
    assert result[0].shape == img_rgb.shape[:2]
    assert result[1].shape == img_rgb.shape[:2]
    assert result[2].shape == img_rgb.shape[:2]
Пример #4
0
def test_quickshift_medoid_gaps():
    i = img.copy()
    maps, gaps, estimate = quickshift(i,
                                      kernel_size=2,
                                      max_dist=10,
                                      medoid=True)
    assert gaps.shape == (512, 512)
    assert_allclose(
        gaps[0:5,
             0], [228071.506, 290406.801, 323886.572, 323339.597, 293392.239],
        rtol=1e-3)
Пример #5
0
def test_flatmap():
    maps = quickshift(img, 2, 10)[0]
    labels, clusters = flatmap(maps)

    assert maps.dtype == np.float64
    assert maps.dtype == img.dtype
    assert maps.shape == img.shape
    assert labels.dtype == maps.dtype
    assert labels.shape == maps.shape
    assert clusters.dtype == maps.dtype
    assert clusters.size == maps.size
Пример #6
0
def test_quickshift(kernel_size, max_dist, medoid):
    result = quickshift(img,
                        kernel_size=kernel_size,
                        max_dist=max_dist,
                        medoid=medoid)
    assert result[0].dtype == np.float64
    assert result[1].dtype == np.float64
    assert result[0].shape == img.shape
    assert result[1].shape == img.shape
    if max_dist is not None:
        assert result[2].dtype == np.float64
        assert result[2].shape == img.shape
Пример #7
0
def test_quickshift_quick_gaps():
    i = img.copy()
    maps, gaps, estimate = quickshift(i, kernel_size=2, max_dist=10)
    assert gaps.shape == (512, 512)
    assert_allclose(gaps[0:6, 3], [1., 1., 1., 1.4142, 1., 2.2360], rtol=1e-3)
Пример #8
0
def test_quickshift_quick_maps():
    i = img.copy()
    maps, gaps, estimate = quickshift(i, kernel_size=2, max_dist=10)
    assert maps.shape == (512, 512)
    assert_allclose(maps[0:5, 0], [2., 514., 1026., 1025., 1537.], rtol=1e-3)
Пример #9
0
import numpy as np
from numpy.testing import assert_allclose
from cyvlfeat.quickshift.quickshift import quickshift
from cyvlfeat.quickshift.flatmap import flatmap

from cyvlfeat.test_util import lena

img = lena().astype(np.float32)
result = quickshift(img, 2, 10)
maps = result[0]


def test_flatmap_labels():
    labels, clusters = flatmap(maps)
    assert labels.shape == (512, 512)
    assert_allclose(labels[0, 0:6],
                    [1027., 1027., 1027., 1027., 1027., 12303.],
                    rtol=1e-3)


def test_flatmap_clusters():
    labels, clusters = flatmap(maps)
    assert clusters.shape == (262144, )
    assert_allclose(clusters[0:6], [1., 1., 1., 1., 1., 56.], rtol=1e-3)


def test_quickshift_medoid_maps():
    i = img.copy()
    maps, gaps, estimate = quickshift(i,
                                      kernel_size=2,
                                      max_dist=10,