Пример #1
0
def corr2d_multi_in(X, K):
    #    for x, k in zip(X, K):
    #        print(d2l.corr2d(x, k))
    return nd.add_n(*[d2l.corr2d(x, k) for x, k in zip(X, K)])
Пример #2
0
def corr2d_multi_in(X, K):
    # First, traverse along the 0th dimension (channel dimension) of X and K.
    # Then, add them together by using * to turn the result list into a
    # positional argument of the add_n function
    return nd.add_n(*[d2l.corr2d(x, k) for x, k in zip(X, K)])
Пример #3
0
 def forward(self, x):
     return d2l.corr2d(x, self.weight.data()) + self.bias.data()
Пример #4
0
def convolution_test():
    X = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
    K = np.array([[0, 1], [2, 3]])
    corr = d2l.corr2d(X, K)
    print("shape {}, value {}".format(corr.shape, corr))
Пример #5
0
    K = np.array([[0, 1], [2, 3]])
    corr = d2l.corr2d(X, K)
    print("shape {}, value {}".format(corr.shape, corr))


class Conv2D(nn.Block):
    def __init__(self, kernel_size, **kwargs):
        super().__init__(**kwargs)
        self.weight = self.params.get('weight', shape=kernel_size)
        self.bias = self.params.get('bias', shape=(1, ))

    def forward(self, x):
        return d2l.corr2d(x, self.weight.data()) + self.bias.data()


def sample_black_white_image():
    X = np.ones((6, 8))
    X[:, 2:6] = 0
    return X


# kernel
K = np.array([[1, -1]])

Y = d2l.corr2d(sample_black_white_image(), K)
print("shape {}, value {}".format(Y.shape, Y))

# transposed
Y_t = d2l.corr2d(sample_black_white_image().T, K)
print("transposed : shape {}, value {}".format(Y_t.shape, Y_t))