Пример #1
0
def show_fashion_mnist(images, labels):
    d2l.use_svg_display()
    # Here _ means that we ignore (not use) variables
    _, figs = d2l.plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.reshape((28, 28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
Пример #2
0
 def __init__(self, xlabel=None, ylabel=None, legend=[], xlim=None,
              ylim=None, xscale='linear', yscale='linear', fmts=None,
              nrows=1, ncols=1, figsize=(3.5, 2.5)):
     """Incrementally plot multiple lines."""
     d2l.use_svg_display()
     self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
     if nrows * ncols == 1: self.axes = [self.axes,]
     # use a lambda to capture arguments
     self.config_axes = lambda : d2l.set_axes(
         self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
     self.X, self.Y, self.fmts = None, None, fmts
Пример #3
0
import d2l
from matplotlib import pyplot as plt
from mxnet import npx, gluon

npx.set_np()

d2l.use_svg_display()

mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)

print("train length : {}, test length: {}".format(len(mnist_train),
                                                  len(mnist_test)))

X, y = mnist_train[:18]
# d2l.show_images(X.squeeze(axis=-1), 2, 9, titles=d2l.get_fashion_mnist_labels(y))
# plt.show()

batch_size = 256
transformer = gluon.data.vision.transforms.ToTensor()
train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer),
                                   batch_size,
                                   shuffle=True,
                                   num_workers=d2l.get_dataloader_workers())

timer = d2l.Timer()
for X, y in train_iter:
    continue
print("loading dada takes {:.2f} sec".format(timer.stop()))

train_iter, test_iter = d2l.load_data_fashion_mnist(32, (64, 64))