Пример #1
0
def show_fashion_mnist(images, labels):
    d2l.use_svg_display()
    _, figs = d2l.plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.reshape((28, 28)).asnumpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
Пример #2
0
def show_fashion_mnist(images, labels):
    d2l.use_svg_display()                                          # Use svg format to display plo
    _, figs = d2l.plt.subplots(1, len(images), figsize=(12,12))    # _表示忽略 不使用该返回值
    for f, img, lbl in zip(figs, images, labels):                   # 从压缩文件中直接读出数据(图像,标签)
        f.imshow(img.reshape((28,28)).asnumpy())
        f.set_title(lbl)                                           # 显示标签
        f.axes.get_xaxis().set_visible(False)                      # 不显示坐标刻度X
        f.axes.get_yaxis().set_visible(False)                      # 不显示坐标刻度Y
    d2l.plt.show()                                                 # Pycharm中没有show()不会出现图片的
Пример #3
0
 def __init__(self,
              xlabel=None,
              ylabel=None,
              legend=[],
              xlim=None,
              ylim=None,
              xscale='linear',
              yscale='linear',
              fmts=None,
              nrows=1,
              ncols=1,
              figsize=(3.5, 2.5)):
     """Incrementally plot multiple lines."""
     d2l.use_svg_display()
     self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
     if nrows * ncols == 1: self.axes = [
             self.axes,
     ]
     # use a lambda to capture arguments
     self.config_axes = lambda: d2l.set_axes(self.axes[
         0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
     self.X, self.Y, self.fmts = None, None, fmts
Пример #4
0
from mxnet.gluon import data as gdata
import d2lzh as d2l
from mxnet.gluon import nn
import matplotlib
from mxnet import init, autograd
from mxnet import gluon

train_data = gdata.vision.FashionMNIST(train=True)
test_data = gdata.vision.FashionMNIST(train=False)
batch_size = 256
data_iter = gdata.DataLoader(train_data, batch_size=batch_size, shuffle=True)
d2l.use_svg_display()
images, labels = train_data[0:9]


def get_fashionmnist_label(labels):
    texts = [
        't-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt',
        'sneaker', 'bag', 'ankle boot'
    ]
    return [texts[int(i)] for i in labels]


def show_fashion_mnist(images, labels):
    _, figs = d2l.plt.subplots(1, len(images), figsize=(12, 12))
    for f, image, label in zip(figs, images, get_fashionmnist_label(labels)):
        f.imshow(image.reshape((28, 28)).asnumpy())
        f.set_title(label)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    matplotlib.pyplot.show()