Пример #1
0
def test_bcq_impl(
    observation_shape,
    action_size,
    actor_learning_rate,
    critic_learning_rate,
    imitator_learning_rate,
    actor_optim_factory,
    critic_optim_factory,
    imitator_optim_factory,
    encoder_factory,
    q_func_factory,
    gamma,
    tau,
    n_critics,
    lam,
    n_action_samples,
    action_flexibility,
    latent_size,
    beta,
    scaler,
    action_scaler,
):
    impl = BCQImpl(
        observation_shape=observation_shape,
        action_size=action_size,
        actor_learning_rate=actor_learning_rate,
        critic_learning_rate=critic_learning_rate,
        imitator_learning_rate=imitator_learning_rate,
        actor_optim_factory=actor_optim_factory,
        critic_optim_factory=critic_optim_factory,
        imitator_optim_factory=imitator_optim_factory,
        actor_encoder_factory=encoder_factory,
        critic_encoder_factory=encoder_factory,
        imitator_encoder_factory=encoder_factory,
        q_func_factory=create_q_func_factory(q_func_factory),
        gamma=gamma,
        tau=tau,
        n_critics=n_critics,
        lam=lam,
        n_action_samples=n_action_samples,
        action_flexibility=action_flexibility,
        latent_size=latent_size,
        beta=beta,
        use_gpu=None,
        scaler=scaler,
        action_scaler=action_scaler,
    )
    impl.build()

    # test internal methods
    x = torch.rand(32, *observation_shape)

    repeated_x = impl._repeat_observation(x)
    assert repeated_x.shape == (32, n_action_samples) + observation_shape

    action = impl._sample_repeated_action(repeated_x)
    assert action.shape == (32, n_action_samples, action_size)

    value = impl._predict_value(repeated_x, action)
    assert value.shape == (n_critics, 32 * n_action_samples, 1)

    best_action = impl._predict_best_action(x)
    assert best_action.shape == (32, action_size)

    torch_impl_tester(impl, discrete=False, deterministic_best_action=False)
Пример #2
0
def test_bcq_impl(
    observation_shape,
    action_size,
    actor_learning_rate,
    critic_learning_rate,
    imitator_learning_rate,
    actor_optim_factory,
    critic_optim_factory,
    imitator_optim_factory,
    encoder_factory,
    q_func_factory,
    gamma,
    tau,
    n_critics,
    bootstrap,
    share_encoder,
    lam,
    n_action_samples,
    action_flexibility,
    latent_size,
    beta,
    scaler,
    augmentation,
):
    impl = BCQImpl(
        observation_shape,
        action_size,
        actor_learning_rate,
        critic_learning_rate,
        imitator_learning_rate,
        actor_optim_factory,
        critic_optim_factory,
        imitator_optim_factory,
        encoder_factory,
        encoder_factory,
        encoder_factory,
        create_q_func_factory(q_func_factory),
        gamma,
        tau,
        n_critics,
        bootstrap,
        share_encoder,
        lam,
        n_action_samples,
        action_flexibility,
        latent_size,
        beta,
        use_gpu=False,
        scaler=scaler,
        augmentation=augmentation,
    )
    impl.build()

    # test internal methods
    x = torch.rand(32, *observation_shape)

    repeated_x = impl._repeat_observation(x)
    assert repeated_x.shape == (32, n_action_samples) + observation_shape

    action = impl._sample_action(repeated_x)
    assert action.shape == (32, n_action_samples, action_size)

    value = impl._predict_value(repeated_x, action)
    assert value.shape == (n_critics, 32 * n_action_samples, 1)

    target = impl.compute_target(x)
    if q_func_factory == "mean":
        assert target.shape == (32, 1)
    else:
        assert target.shape == (32, impl._q_func.q_funcs[0]._n_quantiles)

    best_action = impl._predict_best_action(x)
    assert best_action.shape == (32, action_size)

    torch_impl_tester(impl, discrete=False, deterministic_best_action=False)