def main(readcsv=read_csv, method='svdDense'): infile = "./data/batch/qr.csv" # configure a QR object algo = d4p.qr() # let's provide a file directly, not a table/array result1 = algo.compute(infile) # We can also load the data ourselfs and provide the numpy array data = readcsv(infile) result2 = algo.compute(data) # QR result provide matrixQ and matrixR assert result1.matrixQ.shape == data.shape assert result1.matrixR.shape == (data.shape[1], data.shape[1]) assert np.allclose(result1.matrixQ, result2.matrixQ, atol=1e-07) assert np.allclose(result1.matrixR, result2.matrixR, atol=1e-07) if hasattr(data, 'toarray'): data = data.toarray( ) # to make the next assertion work with scipy's csr_matrix assert np.allclose(data, np.matmul(result1.matrixQ, result1.matrixR)) return data, result1
def main(readcsv=read_csv, method='svdDense'): infile = "./data/batch/qr.csv" # configure a QR object algo = d4p.qr() # let's provide a file directly, not a table/array result1 = algo.compute(infile) # We can also load the data ourselfs and provide the numpy array data = readcsv(infile) result2 = algo.compute(data) # QR result objects provide eigenvalues, eigenvectors, means and variances return result1
def main(readcsv=None, method='svdDense'): infile = "./data/batch/qr.csv" # configure a QR object algo = d4p.qr(streaming=True) # get the generator (defined in stream.py)... rn = read_next(infile, 112, readcsv) # ... and iterate through chunks/stream for chunk in rn: algo.compute(chunk) # finalize computation result = algo.finalize() # QR result objects provide matrixQ and matrixR return result
def main(): # Each process gets its own data infile = "./data/distributed/qr_{}.csv".format(d4p.my_procid() + 1) # configure a QR object algo = d4p.qr(distributed=True) # let's provide a file directly, not a table/array result1 = algo.compute(infile) # We can also load the data ourselfs and provide the numpy array data = loadtxt(infile, delimiter=',') result2 = algo.compute(data) # QR result provide matrixQ and matrixR assert result1.matrixQ.shape == data.shape assert result1.matrixR.shape == (data.shape[1], data.shape[1]) assert allclose(result1.matrixQ, result2.matrixQ, atol=1e-07) assert allclose(result1.matrixR, result2.matrixR, atol=1e-07) return data, result1