Пример #1
0
from pathlib import Path
from dacbench.logger import Logger
from dacbench.wrappers import PerformanceTrackingWrapper, ObservationWrapper
from examples.example_utils import make_chainer_a3c
from dacbench.benchmarks import CMAESBenchmark

# Make logger object
logger = Logger(experiment_name="CMAESBenchmark",
                output_path=Path("../plotting/data"))

# Make CMA-ES environment
# We use the configuration from the "Learning to Optimize Step-size Adaption in CMA-ES" Paper by Shala et al.
bench = CMAESBenchmark()
env = bench.get_benchmark()
logger.set_env(env)

# Wrap to track performance
performance_logger = logger.add_module(PerformanceTrackingWrapper)
env = PerformanceTrackingWrapper(env=env, logger=performance_logger)

# Also wrap to make the dictionary observations into an easy to work with list
env = ObservationWrapper(env)

# Make chainer agent
obs_size = env.observation_space.low.size
action_size = env.action_space.low.size
agent = make_chainer_a3c(obs_size, action_size)

# Training
num_episodes = 3
for i in range(num_episodes):
Пример #2
0
 def test_benchmark_env(self):
     bench = CMAESBenchmark()
     env = bench.get_benchmark()
     self.assertTrue(issubclass(type(env), CMAESEnv))
Пример #3
0
 def get_test_env(self) -> AbstractEnv:
     bench = CMAESBenchmark()
     env = bench.get_benchmark(seed=42)
     return env