class ONNXTypeConstraint: """ Python representation of an ONNX type constraint. """ type_str = Property(dtype=str, desc="The type parameter string") types = ListProperty( element_type=typeclass, desc= "The possible types. Note that only tensor types are currently supported." ) def __repr__(self): return self.type_str
class MyListObject(object): list_prop = ListProperty(element_type=int) def __init__(self, p): super().__init__() self.list_prop = p def to_json(self): return all_properties_to_json(self) @staticmethod def from_json(json_obj, context=None): ret = MyListObject([]) set_properties_from_json(ret, json_obj, context=context) return ret
class Map(object): """ A Map is a two-node representation of parametric graphs, containing an integer set by which the contents (nodes dominated by an entry node and post-dominated by an exit node) are replicated. Maps contain a `schedule` property, which specifies how the scope should be scheduled (execution order). Code generators can use the schedule property to generate appropriate code, e.g., GPU kernels. """ # List of (editable) properties label = Property(dtype=str, desc="Label of the map") params = ListProperty(element_type=str, desc="Mapped parameters") range = RangeProperty(desc="Ranges of map parameters", default=sbs.Range([])) schedule = Property(dtype=dtypes.ScheduleType, desc="Map schedule", choices=dtypes.ScheduleType, from_string=lambda x: dtypes.ScheduleType[x], default=dtypes.ScheduleType.Default) unroll = Property(dtype=bool, desc="Map unrolling") collapse = Property(dtype=int, default=1, desc="How many dimensions to" " collapse into the parallel range") debuginfo = DebugInfoProperty() is_collapsed = Property(dtype=bool, desc="Show this node/scope/state as collapsed", default=False) instrument = Property(choices=dtypes.InstrumentationType, desc="Measure execution statistics with given method", default=dtypes.InstrumentationType.No_Instrumentation) def __init__(self, label, params, ndrange, schedule=dtypes.ScheduleType.Default, unroll=False, collapse=1, fence_instrumentation=False, debuginfo=None): super(Map, self).__init__() # Assign properties self.label = label self.schedule = schedule self.unroll = unroll self.collapse = 1 self.params = params self.range = ndrange self.debuginfo = debuginfo self._fence_instrumentation = fence_instrumentation def __str__(self): return self.label + "[" + ", ".join([ "{}={}".format(i, r) for i, r in zip( self._params, [sbs.Range.dim_to_string(d) for d in self._range]) ]) + "]" def validate(self, sdfg, state, node): if not dtypes.validate_name(self.label): raise NameError('Invalid map name "%s"' % self.label) def get_param_num(self): """ Returns the number of map dimension parameters/symbols. """ return len(self.params)
class Stream(Data): """ Stream (or stream array) data descriptor. """ # Properties offset = ListProperty(element_type=symbolic.pystr_to_symbolic) buffer_size = SymbolicProperty(desc="Size of internal buffer.", default=0) def __init__(self, dtype, buffer_size, shape=None, transient=False, storage=dtypes.StorageType.Default, location=None, offset=None, lifetime=dtypes.AllocationLifetime.Scope, debuginfo=None): if shape is None: shape = (1, ) self.buffer_size = buffer_size if offset is not None: if len(offset) != len(shape): raise TypeError('Offset must be the same size as shape') self.offset = cp.copy(offset) else: self.offset = [0] * len(shape) super(Stream, self).__init__(dtype, shape, transient, storage, location, lifetime, debuginfo) def to_json(self): attrs = serialize.all_properties_to_json(self) retdict = {"type": type(self).__name__, "attributes": attrs} return retdict @classmethod def from_json(cls, json_obj, context=None): # Create dummy object ret = cls(dtypes.int8, 1) serialize.set_properties_from_json(ret, json_obj, context=context) # Check validity now ret.validate() return ret def __repr__(self): return '%s (dtype=%s, shape=%s)' % (type(self).__name__, self.dtype, self.shape) @property def total_size(self): return _prod(self.shape) @property def strides(self): return [_prod(self.shape[i + 1:]) for i in range(len(self.shape))] def clone(self): return type(self)(self.dtype, self.buffer_size, self.shape, self.transient, self.storage, self.location, self.offset, self.lifetime, self.debuginfo) # Checks for equivalent shape and type def is_equivalent(self, other): if not isinstance(other, type(self)): return False # Test type if self.dtype != other.dtype: return False # Test dimensionality if len(self.shape) != len(other.shape): return False # Test shape for dim, otherdim in zip(self.shape, other.shape): if dim != otherdim: return False return True def as_arg(self, with_types=True, for_call=False, name=None): if not with_types or for_call: return name if self.storage in [ dtypes.StorageType.GPU_Global, dtypes.StorageType.GPU_Shared ]: return 'dace::GPUStream<%s, %s> %s' % (str( self.dtype.ctype), 'true' if sp.log( self.buffer_size, 2).is_Integer else 'false', name) return 'dace::Stream<%s> %s' % (str(self.dtype.ctype), name) def sizes(self): return [ d.name if isinstance(d, symbolic.symbol) else str(d) for d in self.shape ] def size_string(self): return (" * ".join( [cppunparse.pyexpr2cpp(symbolic.symstr(s)) for s in self.shape])) def is_stream_array(self): return _prod(self.shape) != 1 def covers_range(self, rng): if len(rng) != len(self.shape): return False for s, (rb, re, rs) in zip(self.shape, rng): # Shape has to be positive if isinstance(s, sp.Basic): olds = s if 'positive' in s.assumptions0: s = sp.Symbol(str(s), **s.assumptions0) else: s = sp.Symbol(str(s), positive=True, **s.assumptions0) if isinstance(rb, sp.Basic): rb = rb.subs({olds: s}) if isinstance(re, sp.Basic): re = re.subs({olds: s}) if isinstance(rs, sp.Basic): rs = rs.subs({olds: s}) try: if rb < 0: # Negative offset return False except TypeError: # cannot determine truth value of Relational pass #print('WARNING: Cannot evaluate relational expression %s, assuming true.' % (rb > 0), # 'If this expression is false, please refine symbol definitions in the program.') try: if re > s: # Beyond shape return False except TypeError: # cannot determine truth value of Relational pass #print('WARNING: Cannot evaluate relational expression %s, assuming true.' % (re < s), # 'If this expression is false, please refine symbol definitions in the program.') return True @property def free_symbols(self): result = super().free_symbols if isinstance(self.buffer_size, sp.Expr): result |= set(self.buffer_size.free_symbols) for o in self.offset: if isinstance(o, sp.Expr): result |= set(o.free_symbols) return result
class Array(Data): """ Array/constant descriptor (dimensions, type and other properties). """ # Properties allow_conflicts = Property( dtype=bool, default=False, desc='If enabled, allows more than one ' 'memlet to write to the same memory location without conflict ' 'resolution.') strides = ShapeProperty( # element_type=symbolic.pystr_to_symbolic, desc='For each dimension, the number of elements to ' 'skip in order to obtain the next element in ' 'that dimension.') total_size = SymbolicProperty( default=1, desc='The total allocated size of the array. Can be used for' ' padding.') offset = ListProperty(element_type=symbolic.pystr_to_symbolic, desc='Initial offset to translate all indices by.') may_alias = Property(dtype=bool, default=False, desc='This pointer may alias with other pointers in ' 'the same function') alignment = Property(dtype=int, default=0, desc='Allocation alignment in bytes (0 uses ' 'compiler-default)') def __init__(self, dtype, shape, transient=False, allow_conflicts=False, storage=dtypes.StorageType.Default, location=None, strides=None, offset=None, may_alias=False, lifetime=dtypes.AllocationLifetime.Scope, alignment=0, debuginfo=None, total_size=None): super(Array, self).__init__(dtype, shape, transient, storage, location, lifetime, debuginfo) if shape is None: raise IndexError('Shape must not be None') self.allow_conflicts = allow_conflicts self.may_alias = may_alias self.alignment = alignment if strides is not None: self.strides = cp.copy(strides) else: self.strides = [_prod(shape[i + 1:]) for i in range(len(shape))] self.total_size = total_size or _prod(shape) if offset is not None: self.offset = cp.copy(offset) else: self.offset = [0] * len(shape) self.validate() def __repr__(self): return '%s (dtype=%s, shape=%s)' % (type(self).__name__, self.dtype, self.shape) def clone(self): return type(self)(self.dtype, self.shape, self.transient, self.allow_conflicts, self.storage, self.location, self.strides, self.offset, self.may_alias, self.lifetime, self.alignment, self.debuginfo, self.total_size) def to_json(self): attrs = serialize.all_properties_to_json(self) # Take care of symbolic expressions attrs['strides'] = list(map(str, attrs['strides'])) retdict = {"type": type(self).__name__, "attributes": attrs} return retdict @classmethod def from_json(cls, json_obj, context=None): # Create dummy object ret = cls(dtypes.int8, ()) serialize.set_properties_from_json(ret, json_obj, context=context) # TODO: This needs to be reworked (i.e. integrated into the list property) ret.strides = list(map(symbolic.pystr_to_symbolic, ret.strides)) # Check validity now ret.validate() return ret def validate(self): super(Array, self).validate() if len(self.strides) != len(self.shape): raise TypeError('Strides must be the same size as shape') if any(not isinstance(s, (int, symbolic.SymExpr, symbolic.symbol, symbolic.sympy.Basic)) for s in self.strides): raise TypeError('Strides must be a list or tuple of integer ' 'values or symbols') if len(self.offset) != len(self.shape): raise TypeError('Offset must be the same size as shape') def covers_range(self, rng): if len(rng) != len(self.shape): return False for s, (rb, re, rs) in zip(self.shape, rng): # Shape has to be positive if isinstance(s, sp.Basic): olds = s if 'positive' in s.assumptions0: s = sp.Symbol(str(s), **s.assumptions0) else: s = sp.Symbol(str(s), positive=True, **s.assumptions0) if isinstance(rb, sp.Basic): rb = rb.subs({olds: s}) if isinstance(re, sp.Basic): re = re.subs({olds: s}) if isinstance(rs, sp.Basic): rs = rs.subs({olds: s}) try: if rb < 0: # Negative offset return False except TypeError: # cannot determine truth value of Relational pass #print('WARNING: Cannot evaluate relational expression %s, assuming true.' % (rb > 0), # 'If this expression is false, please refine symbol definitions in the program.') try: if re > s: # Beyond shape return False except TypeError: # cannot determine truth value of Relational pass #print('WARNING: Cannot evaluate relational expression %s, assuming true.' % (re < s), # 'If this expression is false, please refine symbol definitions in the program.') return True # Checks for equivalent shape and type def is_equivalent(self, other): if not isinstance(other, type(self)): return False # Test type if self.dtype != other.dtype: return False # Test dimensionality if len(self.shape) != len(other.shape): return False # Test shape for dim, otherdim in zip(self.shape, other.shape): # Any other case (constant vs. constant), check for equality if otherdim != dim: return False return True def as_arg(self, with_types=True, for_call=False, name=None): arrname = name if not with_types or for_call: return arrname if self.may_alias: return str(self.dtype.ctype) + ' *' + arrname return str(self.dtype.ctype) + ' * __restrict__ ' + arrname def sizes(self): return [ d.name if isinstance(d, symbolic.symbol) else str(d) for d in self.shape ] @property def free_symbols(self): result = super().free_symbols for s in self.strides: if isinstance(s, sp.Expr): result |= set(s.free_symbols) if isinstance(self.total_size, sp.Expr): result |= set(self.total_size.free_symbols) for o in self.offset: if isinstance(o, sp.Expr): result |= set(o.free_symbols) return result
class Reduce(dace.sdfg.nodes.LibraryNode): """ An SDFG node that reduces an N-dimensional array to an (N-k)-dimensional array, with a list of axes to reduce and a reduction binary function. """ # Global properties implementations = { 'pure': ExpandReducePure, 'OpenMP': ExpandReduceOpenMP, 'CUDA (device)': ExpandReduceCUDADevice, 'CUDA (block)': ExpandReduceCUDABlock, 'CUDA (block allreduce)': ExpandReduceCUDABlockAll # 'CUDA (warp)': ExpandReduceCUDAWarp, # 'CUDA (warp allreduce)': ExpandReduceCUDAWarpAll } default_implementation = 'pure' # Properties axes = ListProperty(element_type=int, allow_none=True) wcr = LambdaProperty(default='lambda a, b: a') identity = Property(allow_none=True) def __init__(self, wcr='lambda a, b: a', axes=None, identity=None, schedule=dtypes.ScheduleType.Default, debuginfo=None, **kwargs): super().__init__(name='Reduce', **kwargs) self.wcr = wcr self.axes = axes self.identity = identity self.debuginfo = debuginfo self.schedule = schedule @staticmethod def from_json(json_obj, context=None): ret = Reduce("lambda a, b: a", None) dace.serialize.set_properties_from_json(ret, json_obj, context=context) return ret def __str__(self): # Autodetect reduction type redtype = detect_reduction_type(self.wcr) if redtype == dtypes.ReductionType.Custom: wcrstr = unparse(ast.parse(self.wcr).body[0].value.body) else: wcrstr = str(redtype) wcrstr = wcrstr[wcrstr.find('.') + 1:] # Skip "ReductionType." return 'Reduce ({op}), Axes: {axes}'.format( axes=('all' if self.axes is None else str(self.axes)), op=wcrstr) def __label__(self, sdfg, state): return str(self).replace(' Axes', '\nAxes') def validate(self, sdfg, state): if len(state.in_edges(self)) != 1: raise ValueError('Reduce node must have one input') if len(state.out_edges(self)) != 1: raise ValueError('Reduce node must have one output')
class Tasklet(CodeNode): """ A node that contains a tasklet: a functional computation procedure that can only access external data specified using connectors. Tasklets may be implemented in Python, C++, or any supported language by the code generator. """ code = CodeProperty(desc="Tasklet code", default=CodeBlock("")) state_fields = ListProperty( element_type=str, desc="Fields that are added to the global state") code_global = CodeProperty( desc="Global scope code needed for tasklet execution", default=CodeBlock("", dtypes.Language.CPP)) code_init = CodeProperty( desc="Extra code that is called on DaCe runtime initialization", default=CodeBlock("", dtypes.Language.CPP)) code_exit = CodeProperty( desc="Extra code that is called on DaCe runtime cleanup", default=CodeBlock("", dtypes.Language.CPP)) debuginfo = DebugInfoProperty() instrument = EnumProperty( dtype=dtypes.InstrumentationType, desc="Measure execution statistics with given method", default=dtypes.InstrumentationType.No_Instrumentation) def __init__(self, label, inputs=None, outputs=None, code="", language=dtypes.Language.Python, state_fields=None, code_global="", code_init="", code_exit="", location=None, debuginfo=None): super(Tasklet, self).__init__(label, location, inputs, outputs) self.code = CodeBlock(code, language) self.state_fields = state_fields or [] self.code_global = CodeBlock(code_global, dtypes.Language.CPP) self.code_init = CodeBlock(code_init, dtypes.Language.CPP) self.code_exit = CodeBlock(code_exit, dtypes.Language.CPP) self.debuginfo = debuginfo @property def language(self): return self.code.language @staticmethod def from_json(json_obj, context=None): ret = Tasklet("dummylabel") dace.serialize.set_properties_from_json(ret, json_obj, context=context) return ret @property def name(self): return self._label def validate(self, sdfg, state): if not dtypes.validate_name(self.label): raise NameError('Invalid tasklet name "%s"' % self.label) for in_conn in self.in_connectors: if not dtypes.validate_name(in_conn): raise NameError('Invalid input connector "%s"' % in_conn) for out_conn in self.out_connectors: if not dtypes.validate_name(out_conn): raise NameError('Invalid output connector "%s"' % out_conn) @property def free_symbols(self) -> Set[str]: return self.code.get_free_symbols(self.in_connectors.keys() | self.out_connectors.keys()) def infer_connector_types(self, sdfg, state): # If a MLIR tasklet, simply read out the types (it's explicit) if self.code.language == dtypes.Language.MLIR: # Inline import because mlir.utils depends on pyMLIR which may not be installed # Doesn't cause crashes due to missing pyMLIR if a MLIR tasklet is not present from dace.codegen.targets.mlir import utils mlir_ast = utils.get_ast(self.code.code) mlir_is_generic = utils.is_generic(mlir_ast) mlir_entry_func = utils.get_entry_func(mlir_ast, mlir_is_generic) mlir_result_type = utils.get_entry_result_type( mlir_entry_func, mlir_is_generic) mlir_out_name = next(iter(self.out_connectors.keys())) if self.out_connectors[ mlir_out_name] is None or self.out_connectors[ mlir_out_name].ctype == "void": self.out_connectors[mlir_out_name] = utils.get_dace_type( mlir_result_type) elif self.out_connectors[mlir_out_name] != utils.get_dace_type( mlir_result_type): warnings.warn( "Type mismatch between MLIR tasklet out connector and MLIR code" ) for mlir_arg in utils.get_entry_args(mlir_entry_func, mlir_is_generic): if self.in_connectors[ mlir_arg[0]] is None or self.in_connectors[ mlir_arg[0]].ctype == "void": self.in_connectors[mlir_arg[0]] = utils.get_dace_type( mlir_arg[1]) elif self.in_connectors[mlir_arg[0]] != utils.get_dace_type( mlir_arg[1]): warnings.warn( "Type mismatch between MLIR tasklet in connector and MLIR code" ) return # If a Python tasklet, use type inference to figure out all None output # connectors if all(cval.type is not None for cval in self.out_connectors.values()): return if self.code.language != dtypes.Language.Python: return if any(cval.type is None for cval in self.in_connectors.values()): raise TypeError('Cannot infer output connectors of tasklet "%s", ' 'not all input connectors have types' % str(self)) # Avoid import loop from dace.codegen.tools.type_inference import infer_types # Get symbols defined at beginning of node, and infer all types in # tasklet syms = state.symbols_defined_at(self) syms.update(self.in_connectors) new_syms = infer_types(self.code.code, syms) for cname, oconn in self.out_connectors.items(): if oconn.type is None: if cname not in new_syms: raise TypeError('Cannot infer type of tasklet %s output ' '"%s", please specify manually.' % (self.label, cname)) self.out_connectors[cname] = new_syms[cname] def __str__(self): if not self.label: return "--Empty--" else: return self.label
class Stream(Data): """ Stream (or stream array) data descriptor. """ # Properties strides = ListProperty(element_type=symbolic.pystr_to_symbolic) offset = ListProperty(element_type=symbolic.pystr_to_symbolic) buffer_size = SymbolicProperty(desc="Size of internal buffer.") veclen = Property(dtype=int, desc="Vector length. Memlets must adhere to this.") def __init__(self, dtype, veclen, buffer_size, shape=None, transient=False, storage=dace.dtypes.StorageType.Default, location='', strides=None, offset=None, toplevel=False, debuginfo=None): if shape is None: shape = (1, ) self.veclen = veclen self.buffer_size = buffer_size if strides is not None: if len(strides) != len(shape): raise TypeError('Strides must be the same size as shape') self.strides = cp.copy(strides) else: self.strides = cp.copy(list(shape)) if offset is not None: if len(offset) != len(shape): raise TypeError('Offset must be the same size as shape') self.offset = cp.copy(offset) else: self.offset = [0] * len(shape) super(Stream, self).__init__(dtype, shape, transient, storage, location, toplevel, debuginfo) def to_json(self): attrs = dace.serialize.all_properties_to_json(self) # Take care of symbolic expressions attrs['strides'] = list(map(str, attrs['strides'])) retdict = {"type": type(self).__name__, "attributes": attrs} return retdict @staticmethod def from_json(json_obj, context=None): if json_obj['type'] != "Stream": raise TypeError("Invalid data type") # Create dummy object ret = Stream(dace.dtypes.int8, 1, 1) dace.serialize.set_properties_from_json(ret, json_obj, context=context) # TODO: FIXME: # Since the strides are a list-property (normal Property()), # loading from/to string (and, consequently, from/to json) # leads to validation errors (contains Strings/Integers, not sympy symbols). # To fix this, it needs a custom class # For now, this is a workaround: ret.strides = list(map(symbolic.pystr_to_symbolic, ret.strides)) # Check validity now ret.validate() return ret def __repr__(self): return 'Stream (dtype=%s, shape=%s)' % (self.dtype, self.shape) def clone(self): return Stream(self.dtype, self.veclen, self.buffer_size, self.shape, self.transient, self.storage, self.location, self.strides, self.offset, self.toplevel, self.debuginfo) # Checks for equivalent shape and type def is_equivalent(self, other): if not isinstance(other, Stream): return False # Test type if self.dtype != other.dtype: return False # Test dimensionality if len(self.shape) != len(other.shape): return False # Test shape for dim, otherdim in zip(self.shape, other.shape): # If both are symbols, ensure equality if symbolic.issymbolic(dim) and symbolic.issymbolic(otherdim): if dim != otherdim: return False # If one is a symbol and the other is a constant # make sure they are equivalent elif symbolic.issymbolic(otherdim): if symbolic.eval(otherdim) != dim: return False elif symbolic.issymbolic(dim): if symbolic.eval(dim) != otherdim: return False else: # Any other case (constant vs. constant), check for equality if otherdim != dim: return False return True def signature(self, with_types=True, for_call=False, name=None): if not with_types or for_call: return name if self.storage in [ dace.dtypes.StorageType.GPU_Global, dace.dtypes.StorageType.GPU_Shared, dace.dtypes.StorageType.GPU_Stack ]: return 'dace::GPUStream<%s, %s> %s' % (str( self.dtype.ctype), 'true' if sp.log( self.buffer_size, 2).is_Integer else 'false', name) return 'dace::Stream<%s> %s' % (str(self.dtype.ctype), name) def sizes(self): return [ d.name if isinstance(d, symbolic.symbol) else str(d) for d in self.shape ] def size_string(self): return (" * ".join([ cppunparse.pyexpr2cpp(dace.symbolic.symstr(s)) for s in self.strides ])) def is_stream_array(self): return functools.reduce(lambda a, b: a * b, self.strides) != 1 def covers_range(self, rng): if len(rng) != len(self.shape): return False for s, (rb, re, rs) in zip(self.shape, rng): # Shape has to be positive if isinstance(s, sympy.Basic): olds = s if 'positive' in s.assumptions0: s = sympy.Symbol(str(s), **s.assumptions0) else: s = sympy.Symbol(str(s), positive=True, **s.assumptions0) if isinstance(rb, sympy.Basic): rb = rb.subs({olds: s}) if isinstance(re, sympy.Basic): re = re.subs({olds: s}) if isinstance(rs, sympy.Basic): rs = rs.subs({olds: s}) try: if rb < 0: # Negative offset return False except TypeError: # cannot determine truth value of Relational pass #print('WARNING: Cannot evaluate relational expression %s, assuming true.' % (rb > 0), # 'If this expression is false, please refine symbol definitions in the program.') try: if re > s: # Beyond shape return False except TypeError: # cannot determine truth value of Relational pass #print('WARNING: Cannot evaluate relational expression %s, assuming true.' % (re < s), # 'If this expression is false, please refine symbol definitions in the program.') return True
class Array(Data): """ Array/constant descriptor (dimensions, type and other properties). """ # Properties allow_conflicts = Property(dtype=bool) # TODO: Should we use a Code property here? materialize_func = Property(dtype=str, allow_none=True, setter=set_materialize_func) access_order = ListProperty(element_type=int) strides = ListProperty(element_type=symbolic.pystr_to_symbolic) offset = ListProperty(element_type=symbolic.pystr_to_symbolic) may_alias = Property(dtype=bool, default=False, desc='This pointer may alias with other pointers in ' 'the same function') def __init__(self, dtype, shape, materialize_func=None, transient=False, allow_conflicts=False, storage=dace.dtypes.StorageType.Default, location='', access_order=None, strides=None, offset=None, may_alias=False, toplevel=False, debuginfo=None): super(Array, self).__init__(dtype, shape, transient, storage, location, toplevel, debuginfo) if shape is None: raise IndexError('Shape must not be None') self.allow_conflicts = allow_conflicts self.materialize_func = materialize_func self.may_alias = may_alias if access_order is not None: self.access_order = cp.copy(access_order) else: self.access_order = tuple(i for i in range(len(shape))) if strides is not None: self.strides = cp.copy(strides) else: self.strides = cp.copy(list(shape)) if offset is not None: self.offset = cp.copy(offset) else: self.offset = [0] * len(shape) self.validate() def __repr__(self): return 'Array (dtype=%s, shape=%s)' % (self.dtype, self.shape) def clone(self): return Array(self.dtype, self.shape, self.materialize_func, self.transient, self.allow_conflicts, self.storage, self.location, self.access_order, self.strides, self.offset, self.may_alias, self.toplevel, self.debuginfo) def to_json(self): attrs = dace.serialize.all_properties_to_json(self) # Take care of symbolic expressions attrs['strides'] = list(map(str, attrs['strides'])) retdict = {"type": type(self).__name__, "attributes": attrs} return retdict @staticmethod def from_json(json_obj, context=None): if json_obj['type'] != "Array": raise TypeError("Invalid data type") # Create dummy object ret = Array(dace.dtypes.int8, ()) dace.serialize.set_properties_from_json(ret, json_obj, context=context) # TODO: This needs to be reworked (i.e. integrated into the list property) ret.strides = list(map(symbolic.pystr_to_symbolic, ret.strides)) # Check validity now ret.validate() return ret def validate(self): super(Array, self).validate() if len(self.access_order) != len(self.shape): raise TypeError('Access order must be the same size as shape') if len(self.strides) != len(self.shape): raise TypeError('Strides must be the same size as shape') if any(not isinstance(s, (int, symbolic.SymExpr, symbolic.symbol, symbolic.sympy.Basic)) for s in self.strides): raise TypeError('Strides must be a list or tuple of integer ' 'values or symbols') if len(self.offset) != len(self.shape): raise TypeError('Offset must be the same size as shape') def covers_range(self, rng): if len(rng) != len(self.shape): return False for s, (rb, re, rs) in zip(self.shape, rng): # Shape has to be positive if isinstance(s, sympy.Basic): olds = s if 'positive' in s.assumptions0: s = sympy.Symbol(str(s), **s.assumptions0) else: s = sympy.Symbol(str(s), positive=True, **s.assumptions0) if isinstance(rb, sympy.Basic): rb = rb.subs({olds: s}) if isinstance(re, sympy.Basic): re = re.subs({olds: s}) if isinstance(rs, sympy.Basic): rs = rs.subs({olds: s}) try: if rb < 0: # Negative offset return False except TypeError: # cannot determine truth value of Relational pass #print('WARNING: Cannot evaluate relational expression %s, assuming true.' % (rb > 0), # 'If this expression is false, please refine symbol definitions in the program.') try: if re > s: # Beyond shape return False except TypeError: # cannot determine truth value of Relational pass #print('WARNING: Cannot evaluate relational expression %s, assuming true.' % (re < s), # 'If this expression is false, please refine symbol definitions in the program.') return True # Checks for equivalent shape and type def is_equivalent(self, other): if not isinstance(other, Array): return False # Test type if self.dtype != other.dtype: return False # Test dimensionality if len(self.shape) != len(other.shape): return False # Test shape for dim, otherdim in zip(self.shape, other.shape): # If both are symbols, ensure equality if symbolic.issymbolic(dim) and symbolic.issymbolic(otherdim): if dim != otherdim: return False # If one is a symbol and the other is a constant # make sure they are equivalent elif symbolic.issymbolic(otherdim): if symbolic.eval(otherdim) != dim: return False elif symbolic.issymbolic(dim): if symbolic.eval(dim) != otherdim: return False else: # Any other case (constant vs. constant), check for equality if otherdim != dim: return False return True def signature(self, with_types=True, for_call=False, name=None): arrname = name if self.materialize_func is not None: if for_call: return 'nullptr' if not with_types: return arrname arrname = '/* ' + arrname + ' (immaterial) */' if not with_types or for_call: return arrname if self.may_alias: return str(self.dtype.ctype) + ' *' + arrname return str(self.dtype.ctype) + ' * __restrict__ ' + arrname def sizes(self): return [ d.name if isinstance(d, symbolic.symbol) else str(d) for d in self.shape ]
class Reduce(Node): """ An SDFG node that reduces an N-dimensional array to an (N-k)-dimensional array, with a list of axes to reduce and a reduction binary function. """ # Properties axes = ListProperty(element_type=int, allow_none=True) wcr = LambdaProperty() identity = Property(dtype=object, allow_none=True) schedule = Property(dtype=dtypes.ScheduleType, desc="Reduction execution policy", choices=dtypes.ScheduleType, from_string=lambda x: dtypes.ScheduleType[x]) debuginfo = DebugInfoProperty() instrument = Property( choices=dtypes.InstrumentationType, desc="Measure execution statistics with given method", default=dtypes.InstrumentationType.No_Instrumentation) def __init__(self, wcr, axes, wcr_identity=None, schedule=dtypes.ScheduleType.Default, debuginfo=None): super(Reduce, self).__init__() self.wcr = wcr # type: ast._Lambda self.axes = axes self.identity = wcr_identity self.schedule = schedule self.debuginfo = debuginfo def draw_node(self, sdfg, state): return dot.draw_node(sdfg, state, self, shape="invtriangle") @staticmethod def from_json(json_obj, context=None): ret = Reduce("(lambda a, b: (a + b))", None) dace.serialize.set_properties_from_json(ret, json_obj, context=context) return ret def __str__(self): # Autodetect reduction type redtype = detect_reduction_type(self.wcr) if redtype == dtypes.ReductionType.Custom: wcrstr = unparse(ast.parse(self.wcr).body[0].value.body) else: wcrstr = str(redtype) wcrstr = wcrstr[wcrstr.find('.') + 1:] # Skip "ReductionType." return 'Op: {op}, Axes: {axes}'.format( axes=('all' if self.axes is None else str(self.axes)), op=wcrstr) def __label__(self, sdfg, state): # Autodetect reduction type redtype = detect_reduction_type(self.wcr) if redtype == dtypes.ReductionType.Custom: wcrstr = unparse(ast.parse(self.wcr).body[0].value.body) else: wcrstr = str(redtype) wcrstr = wcrstr[wcrstr.find('.') + 1:] # Skip "ReductionType." return 'Op: {op}\nAxes: {axes}'.format( axes=('all' if self.axes is None else str(self.axes)), op=wcrstr)
class ONNXSchema: """Python representation of an ONNX schema""" name = Property(dtype=str, desc="The operator name") domain = Property(dtype=str, desc="The operator domain") doc = Property(dtype=str, desc="The operator's docstring") since_version = Property(dtype=int, desc="The version of the operator") attributes = DictProperty(key_type=str, value_type=ONNXAttribute, desc="The operator attributes") type_constraints = DictProperty( key_type=str, value_type=ONNXTypeConstraint, desc="The type constraints for inputs and outputs") inputs = ListProperty(element_type=ONNXParameter, desc="The operator input parameter descriptors") outputs = ListProperty(element_type=ONNXParameter, desc="The operator output parameter descriptors") def __repr__(self): return self.domain + "." + self.name def validate(self): # check all parameters with a type str have a entry in the type constraints for param in chain(self.inputs, self.outputs): if param.type_str not in self.type_constraints: # some operators put a type descriptor here. for those, we will try to insert a new type constraint cons_name = param.name + "_constraint" if cons_name in self.type_constraints: raise ValueError( "Attempted to insert new type constraint, but the name already existed. Please open an issue." ) parsed_typeclass = onnx_type_str_to_typeclass(param.type_str) if parsed_typeclass is None: print("Could not parse typeStr '{}' for parameter '{}'". format(param.type_str, param.name)) cons = ONNXTypeConstraint( cons_name, [parsed_typeclass] if parsed_typeclass is not None else []) self.type_constraints[cons_name] = cons param.type_str = cons_name # check for required parameters with no supported type for param in chain(self.inputs, self.outputs): if ((param.param_type == ONNXParameterType.Single or param.param_type == ONNXParameterType.Variadic) and len(self.type_constraints[param.type_str].types) == 0): raise NotImplementedError( "None of the types for parameter '{}' are supported". format(param.name)) # check that all variadic parameter names do not contain "__" for param in chain(self.inputs, self.outputs): if param.param_type == ONNXParameterType.Variadic and "__" in param.name: raise ValueError( "Unsupported parameter name '{}': variadic parameter names must not contain '__'" .format(param.name)) # check that all inputs and outputs have unique names seen = set() for param in self.inputs: if param.name in seen: raise ValueError( "Got duplicate input parameter name '{}'".format( param.name)) seen.add(param.name) seen = set() for param in self.outputs: if param.name in seen: raise ValueError( "Got duplicate output parameter name '{}'".format( param.name)) seen.add(param.name)
if attr.type in [ ONNXAttributeType.Int, ONNXAttributeType.String, ONNXAttributeType.Float, ONNXAttributeType.Tensor ]: attrs[name] = Property(dtype=_ATTR_TYPE_TO_PYTHON_TYPE[attr.type], desc=attr.description, allow_none=True, default=None if attr.default_value is None else attr.default_value) elif attr.type in [ ONNXAttributeType.Ints, ONNXAttributeType.Strings, ONNXAttributeType.Floats ]: attrs[name] = ListProperty( element_type=_ATTR_TYPE_TO_PYTHON_TYPE[attr.type], desc=attr.description, allow_none=True, default=None if attr.default_value is None else attr.default_value) elif attr.required: raise NotImplementedError( "Required attribute '{}' has an unsupported type".format( attr.name)) required_attrs = { name for name, attr in dace_schema.attributes.items() if attr.required } def __init__(self, name, *args, location=None, **op_attributes): super(ONNXOp, self).__init__( name,
class SubArray(object): """ Sub-arrays describe subsets of Arrays (see `dace::data::Array`) for purposes of distributed communication. They are implemented with [MPI_Type_create_subarray](https://www.mpich.org/static/docs/v3.2/www3/MPI_Type_create_subarray.html). Sub-arrays can be also used for collective scatter/gather communication in a process-grid. The `shape`, `subshape`, and `dtype` properties correspond to the `array_of_sizes`, `array_of_subsizes`, and `oldtype` parameters of `MPI_Type_create_subarray`. The following properties are used for collective scatter/gather communication in a process-grid: The `pgrid` property is the name of the process-grid where the data will be distributed. The `correspondence` property matches the arrays dimensions to the process-grid's dimensions. For example, if one wants to distribute a matrix to a 2D process-grid, but tile the matrix rows over the grid's columns, then `correspondence = [1, 0]`. """ name = Property(dtype=str, desc="The type's name.") dtype = TypeClassProperty(default=dtypes.int32, choices=dtypes.Typeclasses) shape = ShapeProperty(default=[], desc="The array's shape.") subshape = ShapeProperty(default=[], desc="The sub-array's shape.") pgrid = Property( dtype=str, allow_none=True, default=None, desc="Name of the process-grid where the data are distributed.") correspondence = ListProperty( int, allow_none=True, default=None, desc="Correspondence of the array's indices to the process grid's " "indices.") def __init__(self, name: str, dtype: dtypes.typeclass, shape: ShapeType, subshape: ShapeType, pgrid: str = None, correspondence: Sequence[Integral] = None): self.name = name self.dtype = dtype self.shape = shape self.subshape = subshape self.pgrid = pgrid self.correspondence = correspondence or list(range(len(shape))) self._validate() def validate(self): """ Validate the correctness of this object. Raises an exception on error. """ self._validate() # Validation of this class is in a separate function, so that this # class can call `_validate()` without calling the subclasses' # `validate` function. def _validate(self): if any(not isinstance(s, (Integral, symbolic.SymExpr, symbolic.symbol, symbolic.sympy.Basic)) for s in self.shape): raise TypeError( 'Shape must be a list or tuple of integer values or symbols') if any(not isinstance(s, (Integral, symbolic.SymExpr, symbolic.symbol, symbolic.sympy.Basic)) for s in self.subshape): raise TypeError( 'Sub-shape must be a list or tuple of integer values or symbols' ) if any(not isinstance(i, Integral) for i in self.correspondence): raise TypeError( 'Correspondence must be a list or tuple of integer values') if len(self.shape) != len(self.subshape): raise ValueError( 'The dimensionality of the shape and sub-shape must match') if len(self.correspondence) != len(self.shape): raise ValueError( 'The dimensionality of the shape and correspondence list must match' ) return True def to_json(self): attrs = serialize.all_properties_to_json(self) retdict = {"type": type(self).__name__, "attributes": attrs} return retdict @classmethod def from_json(cls, json_obj, context=None): # Create dummy object ret = cls('tmp', dtypes.int8, [], [], 'tmp', []) serialize.set_properties_from_json(ret, json_obj, context=context) # Check validity now ret.validate() return ret def init_code(self): """ Outputs MPI allocation/initialization code for the sub-array MPI datatype ONLY if the process-grid is set. It is assumed that the following variables exist in the SDFG program's state: - MPI_Datatype {self.name} - int* {self.name}_counts - int* {self.name}_displs These variables are typically added to the program's state through a Tasklet, e.g., the Dummy MPI node (for more details, check the DaCe MPI library in `dace/libraries/mpi`). """ from dace.libraries.mpi import utils if self.pgrid: return f""" if (__state->{self.pgrid}_valid) {{ int sizes[{len(self.shape)}] = {{{', '.join([str(s) for s in self.shape])}}}; int subsizes[{len(self.shape)}] = {{{', '.join([str(s) for s in self.subshape])}}}; int corr[{len(self.shape)}] = {{{', '.join([str(i) for i in self.correspondence])}}}; int basic_stride = subsizes[{len(self.shape)} - 1]; int process_strides[{len(self.shape)}]; int block_strides[{len(self.shape)}]; int data_strides[{len(self.shape)}]; process_strides[{len(self.shape)} - 1] = 1; block_strides[{len(self.shape)} - 1] = subsizes[{len(self.shape)} - 1]; data_strides[{len(self.shape)} - 1] = 1; for (auto i = {len(self.shape)} - 2; i >= 0; --i) {{ block_strides[i] = block_strides[i+1] * subsizes[i]; process_strides[i] = process_strides[i+1] * __state->{self.pgrid}_dims[corr[i+1]]; data_strides[i] = block_strides[i] * process_strides[i] / basic_stride; }} MPI_Datatype type; int origin[{len(self.shape)}] = {{{','.join(['0'] * len(self.shape))}}}; MPI_Type_create_subarray({len(self.shape)}, sizes, subsizes, origin, MPI_ORDER_C, {utils.MPI_DDT(self.dtype.base_type)}, &type); MPI_Type_create_resized(type, 0, basic_stride*sizeof({self.dtype.ctype}), &__state->{self.name}); MPI_Type_commit(&__state->{self.name}); __state->{self.name}_counts = new int[__state->{self.pgrid}_size]; __state->{self.name}_displs = new int[__state->{self.pgrid}_size]; int block_id[{len(self.shape)}] = {{0}}; int displ = 0; for (auto i = 0; i < __state->{self.pgrid}_size; ++i) {{ __state->{self.name}_counts[i] = 1; __state->{self.name}_displs[i] = displ; int idx = {len(self.shape)} - 1; while (idx >= 0 && block_id[idx] + 1 >= __state->{self.pgrid}_dims[corr[idx]]) {{ block_id[idx] = 0; displ -= data_strides[idx] * (__state->{self.pgrid}_dims[corr[idx]] - 1); idx--; }} if (idx >= 0) {{ block_id[idx] += 1; displ += data_strides[idx]; }} else {{ assert(i == __state->{self.pgrid}_size - 1); }} }} }} """ else: return "" def exit_code(self): """ Outputs MPI deallocation code for the sub-array MPI datatype ONLY if the process-grid is set. """ if self.pgrid: return f""" if (__state->{self.pgrid}_valid) {{ delete[] __state->{self.name}_counts; delete[] __state->{self.name}_displs; MPI_Type_free(&__state->{self.name}); }} """ else: return ""
class ProcessGrid(object): """ Process-grids implement cartesian topologies similarly to cartesian communicators created with [MPI_Cart_create](https://www.mpich.org/static/docs/latest/www3/MPI_Cart_create.html) and [MPI_Cart_sub](https://www.mpich.org/static/docs/v3.2/www3/MPI_Cart_sub.html). The boolean property `is_subgrid` provides a switch between "parent" process-grids (equivalent to communicators create with `MPI_Cart_create`) and sub-grids (equivalent to communicators created with `MPI_Cart_sub`). If `is_subgrid` is false, a "parent" process-grid is created. The `shape` property is equivalent to the `dims` parameter of `MPI_Cart_create`. The other properties are ignored. All "parent" process-grids spawn out of `MPI_COMM_WORLD`, while their `periods` and `reorder` parameters are set to False. If `is_subgrid` is true, then the `parent_grid` is partitioned to lower-dimensional cartesian sub-grids (for more details, see the documentation of `MPI_Cart_sub`). The `parent_grid` property is equivalent to the `comm` parameter of `MPI_Cart_sub`. The `color` property corresponds to the `remain_dims` parameter of `MPI_Cart_sub`, i.e., the i-th entry specifies whether the i-th dimension is kep in the sub-grid or is dropped. The following properties store information used in the redistribution of data: The `exact_grid` property is either None or the rank of an MPI process in the `parent_grid`. If set then, out of all the sub-grids created, only the one that contains this rank is used for collective communication. The `root` property is used to select the root rank for purposed of collective communication (by default 0). """ name = Property(dtype=str, desc="The process-grid's name.") is_subgrid = Property( dtype=bool, default=False, desc="If true, spanws sub-grids out of the parent process-grid.") shape = ShapeProperty(default=[], desc="The process-grid's shape.") parent_grid = Property( dtype=str, allow_none=True, default=None, desc="Name of the parent process-grid " "(mandatory if `is_subgrid` is true, otherwise ignored).") color = ListProperty( int, allow_none=True, default=None, desc= "The i-th entry specifies whether the i-th dimension is kept in the sub-grid or is " "dropped (mandatory if `is_subgrid` is true, otherwise ignored).") exact_grid = SymbolicProperty( allow_none=True, default=None, desc= "If set then, out of all the sub-grids created, only the one that contains the " "rank with id `exact_grid` will be utilized for collective communication " "(optional if `is_subgrid` is true, otherwise ignored).") root = SymbolicProperty(default=0, desc="The root rank for collective communication.") def __init__(self, name: str, is_subgrid: bool, shape: ShapeType = None, parent_grid: str = None, color: Sequence[Union[Integral, bool]] = None, exact_grid: RankType = None, root: RankType = 0): self.name = name self.is_subgrid = is_subgrid if is_subgrid: self.parent_grid = parent_grid.name self.color = color self.exact_grid = exact_grid self.shape = [ parent_grid.shape[i] for i, remain in enumerate(color) if remain ] else: self.shape = shape self.root = root self._validate() def validate(self): """ Validate the correctness of this object. Raises an exception on error. """ self._validate() # Validation of this class is in a separate function, so that this # class can call `_validate()` without calling the subclasses' # `validate` function. def _validate(self): if self.is_subgrid: if not self.parent_grid or len(self.parent_grid) == 0: raise ValueError( 'Sub-grid misses its corresponding parent process-grid') if any(not isinstance(s, (Integral, symbolic.SymExpr, symbolic.symbol, symbolic.sympy.Basic)) for s in self.shape): raise TypeError( 'Shape must be a list or tuple of integer values or symbols') if self.color and any(c < 0 or c > 1 for c in self.color): raise ValueError( 'Color must have only logical true (1) or false (0) values.') return True def to_json(self): attrs = serialize.all_properties_to_json(self) retdict = {"type": type(self).__name__, "attributes": attrs} return retdict @classmethod def from_json(cls, json_obj, context=None): # Create dummy object ret = cls('tmp', False, []) serialize.set_properties_from_json(ret, json_obj, context=context) # Check validity now ret.validate() return ret def init_code(self): """ Outputs MPI allocation/initialization code for the process-grid. It is assumed that the following variables exist in the SDFG program's state: - MPI_Comm {self.name}_comm - MPI_Group {self.name}_group - int {self.name}_rank - int {self.name}_size - int* {self.name}_dims - int* {self.name}_remain - int* {self.name}_coords - bool {self.name})_valid These variables are typically added to the program's state through a Tasklet, e.g., the Dummy MPI node (for more details, check the DaCe MPI library in `dace/libraries/mpi`). """ if self.is_subgrid: tmp = "" for i, s in enumerate(self.shape): tmp += f"__state->{self.name}_dims[{i}] = {s};\n" tmp += f""" __state->{self.name}_valid = false; if (__state->{self.parent_grid}_valid) {{ int {self.name}_remain[{len(self.color)}] = {{{', '.join(['1' if c else '0' for c in self.color])}}}; MPI_Cart_sub(__state->{self.parent_grid}_comm, {self.name}_remain, &__state->{self.name}_comm); MPI_Comm_group(__state->{self.name}_comm, &__state->{self.name}_group); MPI_Comm_rank(__state->{self.name}_comm, &__state->{self.name}_rank); MPI_Comm_size(__state->{self.name}_comm, &__state->{self.name}_size); MPI_Cart_coords(__state->{self.name}_comm, __state->{self.name}_rank, {len(self.shape)}, __state->{self.name}_coords); """ if self.exact_grid is not None: tmp += f""" int ranks1[1] = {{{self.exact_grid}}}; int ranks2[1]; MPI_Group_translate_ranks(__state->{self.parent_grid}_group, 1, ranks1, __state->{self.name}_group, ranks2); __state->{self.name}_valid = (ranks2[0] != MPI_PROC_NULL && ranks2[0] != MPI_UNDEFINED); }} """ else: tmp += f""" __state->{self.name}_valid = true; }} """ return tmp else: tmp = "" for i, s in enumerate(self.shape): tmp += f"__state->{self.name}_dims[{i}] = {s};\n" tmp += f""" int {self.name}_periods[{len(self.shape)}] = {{0}}; MPI_Cart_create(MPI_COMM_WORLD, {len(self.shape)}, __state->{self.name}_dims, {self.name}_periods, 0, &__state->{self.name}_comm); if (__state->{self.name}_comm != MPI_COMM_NULL) {{ MPI_Comm_group(__state->{self.name}_comm, &__state->{self.name}_group); MPI_Comm_rank(__state->{self.name}_comm, &__state->{self.name}_rank); MPI_Comm_size(__state->{self.name}_comm, &__state->{self.name}_size); MPI_Cart_coords(__state->{self.name}_comm, __state->{self.name}_rank, {len(self.shape)}, __state->{self.name}_coords); __state->{self.name}_valid = true; }} else {{ __state->{self.name}_group = MPI_GROUP_NULL; __state->{self.name}_rank = MPI_PROC_NULL; __state->{self.name}_size = 0; __state->{self.name}_valid = false; }} """ return tmp def exit_code(self): """ Outputs MPI deallocation code for the process-grid. """ return f"""