Пример #1
0
    def apply(self, graph: SDFGState, sdfg: SDFG):
        map_entry = self.map_entry

        # Avoiding import loops
        from dace.transformation.dataflow.strip_mining import StripMining
        from dace.transformation.dataflow.local_storage import InLocalStorage, OutLocalStorage, LocalStorage

        rangeexpr = str(map_entry.map.range.num_elements())

        stripmine_subgraph = {
            StripMining.map_entry: self.subgraph[MPITransformMap.map_entry]
        }
        sdfg_id = sdfg.sdfg_id
        stripmine = StripMining()
        stripmine.setup_match(sdfg, sdfg_id, self.state_id, stripmine_subgraph,
                              self.expr_index)
        stripmine.dim_idx = -1
        stripmine.new_dim_prefix = "mpi"
        stripmine.tile_size = "(" + rangeexpr + "/__dace_comm_size)"
        stripmine.divides_evenly = True
        stripmine.apply(graph, sdfg)

        # Find all in-edges that lead to the map entry
        outer_map = None
        edges = [
            e for e in graph.in_edges(map_entry)
            if isinstance(e.src, nodes.EntryNode)
        ]

        outer_map = edges[0].src

        # Add MPI schedule attribute to outer map
        outer_map.map._schedule = dtypes.ScheduleType.MPI

        # Now create a transient for each array
        for e in edges:
            if e.data.is_empty():
                continue
            in_local_storage_subgraph = {
                LocalStorage.node_a: graph.node_id(outer_map),
                LocalStorage.node_b: self.subgraph[MPITransformMap.map_entry]
            }
            sdfg_id = sdfg.sdfg_id
            in_local_storage = InLocalStorage()
            in_local_storage.setup_match(sdfg, sdfg_id, self.state_id,
                                         in_local_storage_subgraph,
                                         self.expr_index)
            in_local_storage.array = e.data.data
            in_local_storage.apply(graph, sdfg)

        # Transform OutLocalStorage for each output of the MPI map
        in_map_exit = graph.exit_node(map_entry)
        out_map_exit = graph.exit_node(outer_map)

        for e in graph.out_edges(out_map_exit):
            if e.data.is_empty():
                continue
            name = e.data.data
            outlocalstorage_subgraph = {
                LocalStorage.node_a: graph.node_id(in_map_exit),
                LocalStorage.node_b: graph.node_id(out_map_exit)
            }
            sdfg_id = sdfg.sdfg_id
            outlocalstorage = OutLocalStorage()
            outlocalstorage.setup_match(sdfg, sdfg_id, self.state_id,
                                        outlocalstorage_subgraph,
                                        self.expr_index)
            outlocalstorage.array = name
            outlocalstorage.apply(graph, sdfg)
Пример #2
0
    def apply(self, sdfg):
        graph = sdfg.node(self.state_id)
        subgraph = self.subgraph_view(sdfg)
        map_entries = helpers.get_outermost_scope_maps(sdfg, graph, subgraph)

        result = StencilTiling.topology(sdfg, graph, map_entries)
        (children_dict, parent_dict, sink_maps) = result

        # next up, calculate inferred ranges for each map
        # for each map entry, this contains a tuple of dicts:
        # each of those maps from data_name of the array to
        # inferred outer ranges. An inferred outer range is created
        # by taking the union of ranges of inner subsets corresponding
        # to that data and substituting this subset by the min / max of the
        # parametrized map boundaries
        # finally, from these outer ranges we can easily calculate
        # strides and tile sizes required for every map
        inferred_ranges = defaultdict(dict)

        # create array of reverse topologically sorted map entries
        # to iterate over
        topo_reversed = []
        queue = set(sink_maps.copy())
        while len(queue) > 0:
            element = next(e for e in queue if not children_dict[e] - set(topo_reversed))
            topo_reversed.append(element)
            queue.remove(element)
            for parent in parent_dict[element]:
                queue.add(parent)

        # main loop
        # first get coverage dicts for each map entry
        # for each map, contains a tuple of two dicts
        # each of those two maps from data name to outer range
        coverage = {}
        for map_entry in map_entries:
            coverage[map_entry] = StencilTiling.coverage_dicts(sdfg, graph, map_entry, outer_range=True)

        # we have a mapping from data name to outer range
        # however we want a mapping from map parameters to outer ranges
        # for this we need to find out how all array dimensions map to
        # outer ranges

        variable_mapping = defaultdict(list)
        for map_entry in topo_reversed:
            map = map_entry.map

            # first find out variable mapping
            for e in itertools.chain(graph.out_edges(map_entry), graph.in_edges(graph.exit_node(map_entry))):
                mapping = []
                for dim in e.data.subset:
                    syms = set()
                    for d in dim:
                        syms |= symbolic.symlist(d).keys()
                    if len(syms) > 1:
                        raise NotImplementedError("One incoming or outgoing stencil subset is indexed "
                                                  "by multiple map parameters. "
                                                  "This is not supported yet.")
                    try:
                        mapping.append(syms.pop())
                    except KeyError:
                        # just append None if there is no map symbol in it.
                        # we don't care for now.
                        mapping.append(None)

                if e.data in variable_mapping:
                    # assert that this is the same everywhere.
                    # else we might run into problems
                    assert variable_mapping[e.data.data] == mapping
                else:
                    variable_mapping[e.data.data] = mapping

            # now do mapping data name -> outer range
            # and from that infer mapping variable -> outer range
            local_ranges = {dn: None for dn in coverage[map_entry][1].keys()}
            for data_name, cov in coverage[map_entry][1].items():
                local_ranges[data_name] = subsets.union(local_ranges[data_name], cov)
                # now look at proceeding maps
                # and union those subsets -> could be larger with stencil indent
                for child_map in children_dict[map_entry]:
                    if data_name in coverage[child_map][0]:
                        local_ranges[data_name] = subsets.union(local_ranges[data_name],
                                                                coverage[child_map][0][data_name])

            # final assignent: combine local_ranges and variable_mapping
            # together into inferred_ranges
            inferred_ranges[map_entry] = {p: None for p in map.params}
            for data_name, ranges in local_ranges.items():
                for param, r in zip(variable_mapping[data_name], ranges):
                    # create new range from this subset and assign
                    rng = subsets.Range((r, ))
                    if param:
                        inferred_ranges[map_entry][param] = subsets.union(inferred_ranges[map_entry][param], rng)

        # get parameters -- should all be the same
        params = next(iter(map_entries)).map.params.copy()
        # define reference range as inferred range of one of the sink maps
        self.reference_range = inferred_ranges[next(iter(sink_maps))]
        if self.debug:
            print("StencilTiling::Reference Range", self.reference_range)
        # next up, search for the ranges that don't change
        invariant_dims = []
        for idx, p in enumerate(params):
            different = False
            if self.reference_range[p] is None:
                invariant_dims.append(idx)
                warnings.warn(f"StencilTiling::No Stencil pattern detected for parameter {p}")
                continue
            for m in map_entries:
                if inferred_ranges[m][p] != self.reference_range[p]:
                    different = True
                    break
            if not different:
                invariant_dims.append(idx)
                warnings.warn(f"StencilTiling::No Stencil pattern detected for parameter {p}")

        # during stripmining, we will create new outer map entries
        # for easy access
        self._outer_entries = set()
        # with inferred_ranges constructed, we can begin to strip mine
        for map_entry in map_entries:
            # Retrieve map entry and exit nodes.
            map = map_entry.map

            stripmine_subgraph = {StripMining.map_entry: graph.node_id(map_entry)}

            sdfg_id = sdfg.sdfg_id
            last_map_entry = None
            original_schedule = map_entry.schedule
            self.tile_sizes = []
            self.tile_offset_lower = []
            self.tile_offset_upper = []

            # strip mining each dimension where necessary
            removed_maps = 0
            for dim_idx, param in enumerate(map_entry.map.params):
                # get current_node tile size
                if dim_idx >= len(self.strides):
                    tile_stride = symbolic.pystr_to_symbolic(self.strides[-1])
                else:
                    tile_stride = symbolic.pystr_to_symbolic(self.strides[dim_idx])

                trivial = False

                if dim_idx in invariant_dims:
                    self.tile_sizes.append(tile_stride)
                    self.tile_offset_lower.append(0)
                    self.tile_offset_upper.append(0)
                else:
                    target_range_current = inferred_ranges[map_entry][param]
                    reference_range_current = self.reference_range[param]

                    min_diff = symbolic.SymExpr(reference_range_current.min_element()[0] \
                                    - target_range_current.min_element()[0])
                    max_diff = symbolic.SymExpr(target_range_current.max_element()[0] \
                                    - reference_range_current.max_element()[0])

                    try:
                        min_diff = symbolic.evaluate(min_diff, {})
                        max_diff = symbolic.evaluate(max_diff, {})
                    except TypeError:
                        raise RuntimeError("Symbolic evaluation of map "
                                           "ranges failed. Please check "
                                           "your parameters and match.")

                    self.tile_sizes.append(tile_stride + max_diff + min_diff)
                    self.tile_offset_lower.append(symbolic.pystr_to_symbolic(str(min_diff)))
                    self.tile_offset_upper.append(symbolic.pystr_to_symbolic(str(max_diff)))

                # get calculated parameters
                tile_size = self.tile_sizes[-1]
                dim_idx -= removed_maps
                # If map or tile sizes are trivial, skip strip-mining map dimension
                # special cases:
                # if tile size is trivial AND we have an invariant dimension, skip
                if tile_size == map.range.size()[dim_idx] and (dim_idx + removed_maps) in invariant_dims:
                    continue

                # trivial map: we just continue
                if map.range.size()[dim_idx] in [0, 1]:
                    continue

                if tile_size == 1 and tile_stride == 1 and (dim_idx + removed_maps) in invariant_dims:
                    trivial = True
                    removed_maps += 1

                # indent all map ranges accordingly and then perform
                # strip mining on these. Offset inner maps accordingly afterwards

                range_tuple = (map.range[dim_idx][0] + self.tile_offset_lower[-1],
                               map.range[dim_idx][1] - self.tile_offset_upper[-1], map.range[dim_idx][2])
                map.range[dim_idx] = range_tuple
                stripmine = StripMining()
                stripmine.setup_match(sdfg, sdfg_id, self.state_id, stripmine_subgraph, 0)

                stripmine.tiling_type = dtypes.TilingType.CeilRange
                stripmine.dim_idx = dim_idx
                stripmine.new_dim_prefix = self.prefix if not trivial else ''
                # use tile_stride for both -- we will extend
                # the inner tiles later
                stripmine.tile_size = str(tile_stride)
                stripmine.tile_stride = str(tile_stride)
                outer_map = stripmine.apply(graph, sdfg)
                outer_map.schedule = original_schedule

                # if tile stride is 1, we can make a nice simplification by just
                # taking the overapproximated inner range as inner range
                # this eliminates the min/max in the range which
                # enables loop unrolling
                if not trivial:
                    if tile_stride == 1:
                        map_entry.map.range[dim_idx] = tuple(
                            symbolic.SymExpr(el._approx_expr) if isinstance(el, symbolic.SymExpr) else el
                            for el in map_entry.map.range[dim_idx])

                    # in map_entry: enlarge tiles by upper and lower offset
                    # doing it this way and not via stripmine strides ensures
                    # that the max gets changed as well
                    old_range = map_entry.map.range[dim_idx]
                    map_entry.map.range[dim_idx] = ((old_range[0] - self.tile_offset_lower[-1]),
                                                    (old_range[1] + self.tile_offset_upper[-1]), old_range[2])

                # We have to propagate here for correct outer volume and subset sizes
                _propagate_node(graph, map_entry)
                _propagate_node(graph, graph.exit_node(map_entry))

                # usual tiling pipeline
                if last_map_entry:
                    new_map_entry = graph.in_edges(map_entry)[0].src
                    mapcollapse_subgraph = {
                        MapCollapse.outer_map_entry: graph.node_id(last_map_entry),
                        MapCollapse.inner_map_entry: graph.node_id(new_map_entry)
                    }
                    mapcollapse = MapCollapse()
                    mapcollapse.setup_match(sdfg, sdfg_id, self.state_id, mapcollapse_subgraph, 0)
                    mapcollapse.apply(graph, sdfg)
                last_map_entry = graph.in_edges(map_entry)[0].src
            # add last instance of map entries to _outer_entries
            if last_map_entry:
                self._outer_entries.add(last_map_entry)

            # apply to the new map the schedule of the original one
            map_entry.map.schedule = self.schedule

            # Map Unroll Feature: only unroll if conditions are met:
            # Only unroll if at least one of the inner map ranges is strictly larger than 1
            # Only unroll if strides all are one
            if self.unroll_loops and all(s == 1 for s in self.strides) and any(s not in [0, 1]
                                                                               for s in map_entry.range.size()):
                l = len(map_entry.params)
                if l > 1:
                    subgraph = {MapExpansion.map_entry: graph.node_id(map_entry)}
                    trafo_expansion = MapExpansion()
                    trafo_expansion.setup_match(sdfg, sdfg.sdfg_id, sdfg.nodes().index(graph), subgraph, 0)
                    trafo_expansion.apply(graph, sdfg)
                maps = [map_entry]
                for _ in range(l - 1):
                    map_entry = graph.out_edges(map_entry)[0].dst
                    maps.append(map_entry)

                for map in reversed(maps):
                    # MapToForLoop
                    subgraph = {MapToForLoop.map_entry: graph.node_id(map)}
                    trafo_for_loop = MapToForLoop()
                    trafo_for_loop.setup_match(sdfg, sdfg.sdfg_id, sdfg.nodes().index(graph), subgraph, 0)
                    trafo_for_loop.apply(graph, sdfg)
                    nsdfg = trafo_for_loop.nsdfg

                    # LoopUnroll

                    guard = trafo_for_loop.guard
                    end = trafo_for_loop.after_state
                    begin = next(e.dst for e in nsdfg.out_edges(guard) if e.dst != end)

                    subgraph = {
                        DetectLoop.loop_guard: nsdfg.node_id(guard),
                        DetectLoop.loop_begin: nsdfg.node_id(begin),
                        DetectLoop.exit_state: nsdfg.node_id(end)
                    }
                    transformation = LoopUnroll()
                    transformation.setup_match(nsdfg, 0, -1, subgraph, 0)
                    transformation.apply(nsdfg, nsdfg)

            elif self.unroll_loops:
                warnings.warn("StencilTiling::Did not unroll loops. Either all ranges are equal to "
                              "one or range difference is symbolic.")

        self._outer_entries = list(self._outer_entries)
Пример #3
0
    def apply(self, graph: SDFGState, sdfg: SDFG):
        tile_strides = self.tile_sizes
        if self.strides is not None and len(self.strides) == len(tile_strides):
            tile_strides = self.strides

        # Retrieve map entry and exit nodes.
        map_entry = self.map_entry
        from dace.transformation.dataflow.map_collapse import MapCollapse
        from dace.transformation.dataflow.strip_mining import StripMining
        stripmine_subgraph = {
            StripMining.map_entry: self.subgraph[MapTiling.map_entry]
        }
        sdfg_id = sdfg.sdfg_id
        last_map_entry = None
        removed_maps = 0

        original_schedule = map_entry.schedule

        for dim_idx in range(len(map_entry.map.params)):
            if dim_idx >= len(self.tile_sizes):
                tile_size = symbolic.pystr_to_symbolic(self.tile_sizes[-1])
                tile_stride = symbolic.pystr_to_symbolic(tile_strides[-1])
            else:
                tile_size = symbolic.pystr_to_symbolic(
                    self.tile_sizes[dim_idx])
                tile_stride = symbolic.pystr_to_symbolic(tile_strides[dim_idx])

            # handle offsets
            if self.tile_offset and dim_idx >= len(self.tile_offset):
                offset = self.tile_offset[-1]
            elif self.tile_offset:
                offset = self.tile_offset[dim_idx]
            else:
                offset = 0

            dim_idx -= removed_maps
            # If tile size is trivial, skip strip-mining map dimension
            if tile_size == map_entry.map.range.size()[dim_idx]:
                continue

            stripmine = StripMining()
            stripmine.setup_match(sdfg, sdfg_id, self.state_id,
                                  stripmine_subgraph, self.expr_index)

            # Special case: Tile size of 1 should be omitted from inner map
            if tile_size == 1 and tile_stride == 1 and self.tile_trivial == False:
                stripmine.dim_idx = dim_idx
                stripmine.new_dim_prefix = ''
                stripmine.tile_size = str(tile_size)
                stripmine.tile_stride = str(tile_stride)
                stripmine.divides_evenly = True
                stripmine.tile_offset = str(offset)
                stripmine.apply(graph, sdfg)
                removed_maps += 1
            else:
                stripmine.dim_idx = dim_idx
                stripmine.new_dim_prefix = self.prefix
                stripmine.tile_size = str(tile_size)
                stripmine.tile_stride = str(tile_stride)
                stripmine.divides_evenly = self.divides_evenly
                stripmine.tile_offset = str(offset)
                stripmine.apply(graph, sdfg)

            # apply to the new map the schedule of the original one
            map_entry.schedule = original_schedule

            if last_map_entry:
                new_map_entry = graph.in_edges(map_entry)[0].src
                mapcollapse_subgraph = {
                    MapCollapse.outer_map_entry: graph.node_id(last_map_entry),
                    MapCollapse.inner_map_entry: graph.node_id(new_map_entry)
                }
                mapcollapse = MapCollapse()
                mapcollapse.setup_match(sdfg, sdfg_id, self.state_id,
                                        mapcollapse_subgraph, 0)
                mapcollapse.apply(graph, sdfg)
            last_map_entry = graph.in_edges(map_entry)[0].src
        return last_map_entry