Пример #1
0
def test_state_fission():
    '''
    Tests state fission. The starting point is a stae SDFG with two
    Nested SDFGs. The state is splitted into two
    :return:
    '''

    size_n = 16
    size_m = 32
    sdfg = make_nested_sdfg_cpu()

    # state fission
    state = sdfg.states()[0]
    node_x = state.nodes()[0]
    node_y = state.nodes()[1]
    node_z = state.nodes()[2]
    vec_add1 = state.nodes()[3]

    subg = dace.sdfg.graph.SubgraphView(state,
                                        [node_x, node_y, vec_add1, node_z])
    helpers.state_fission(sdfg, subg)
    sdfg.validate()

    assert (len(sdfg.states()) == 2)

    # run the program
    vec_add = sdfg.compile()

    x = np.random.rand(size_n).astype(np.float32)
    y = np.random.rand(size_n).astype(np.float32)
    z = np.random.rand(size_n).astype(np.float32)

    v = np.random.rand(size_m).astype(np.float32)
    w = np.random.rand(size_m).astype(np.float32)
    u = np.random.rand(size_m).astype(np.float32)

    vec_add(x=x, y=y, z=z, v=v, w=w, u=u, n=size_n, m=size_m)

    ref1 = np.add(x, y)
    ref2 = np.add(v, w)

    diff1 = np.linalg.norm(ref1 - z) / size_n
    diff2 = np.linalg.norm(ref2 - u) / size_m

    assert (diff1 <= 1e-5 and diff2 <= 1e-5)
Пример #2
0
def promote_scalars_to_symbols(sdfg: sd.SDFG,
                               ignore: Optional[Set[str]] = None,
                               transients_only: bool = True,
                               integers_only: bool = True) -> Set[str]:
    """
    Promotes all matching transient scalars to SDFG symbols, changing all
    tasklets to inter-state assignments. This enables the transformed symbols
    to be used within states as part of memlets, and allows further
    transformations (such as loop detection) to use the information for
    optimization.

    :param sdfg: The SDFG to run the pass on.
    :param ignore: An optional set of strings of scalars to ignore.
    :param transients_only: If False, also considers global data descriptors (e.g., arguments).
    :param integers_only: If False, also considers non-integral descriptors for promotion.
    :return: Set of promoted scalars.
    :note: Operates in-place.
    """
    # Process:
    # 1. Find scalars to promote
    # 2. For every assignment tasklet/access:
    #    2.1. Fission state to isolate assignment
    #    2.2. Replace assignment with inter-state edge assignment
    # 3. For every read of the scalar:
    #    3.1. If destination is tasklet, remove node, edges, and connectors
    #    3.2. If used in tasklet as subscript or connector, modify tasklet code
    #    3.3. If destination is array, change to tasklet that copies symbol data
    # 4. Remove newly-isolated access nodes
    # 5. Remove data descriptors and add symbols to SDFG
    # 6. Replace subscripts in all interstate conditions and assignments
    # 7. Make indirections with symbols a single memlet
    to_promote = find_promotable_scalars(sdfg,
                                         transients_only=transients_only,
                                         integers_only=integers_only)
    if ignore:
        to_promote -= ignore
    if len(to_promote) == 0:
        return to_promote

    for state in sdfg.nodes():
        scalar_nodes = [
            n for n in state.nodes()
            if isinstance(n, nodes.AccessNode) and n.data in to_promote
        ]
        # Step 2: Assignment tasklets
        for node in scalar_nodes:
            if state.in_degree(node) == 0:
                continue
            in_edge = state.in_edges(node)[0]
            input = in_edge.src

            # There is only zero or one incoming edges by definition
            tasklet_inputs = [e.src for e in state.in_edges(input)]
            # Step 2.1
            new_state = xfh.state_fission(
                sdfg,
                gr.SubgraphView(state, set([input, node] + tasklet_inputs)))
            new_isedge: sd.InterstateEdge = sdfg.out_edges(new_state)[0]
            # Step 2.2
            node: nodes.AccessNode = new_state.sink_nodes()[0]
            input = new_state.in_edges(node)[0].src
            if isinstance(input, nodes.Tasklet):
                # Convert tasklet to interstate edge
                newcode: str = ''
                if input.language is dtypes.Language.Python:
                    newcode = astutils.unparse(input.code.code[0].value)
                elif input.language is dtypes.Language.CPP:
                    newcode = translate_cpp_tasklet_to_python(
                        input.code.as_string.strip())

                # Replace tasklet inputs with incoming edges
                for e in new_state.in_edges(input):
                    memlet_str: str = e.data.data
                    if (e.data.subset is not None and not isinstance(
                            sdfg.arrays[memlet_str], dt.Scalar)):
                        memlet_str += '[%s]' % e.data.subset
                    newcode = re.sub(r'\b%s\b' % re.escape(e.dst_conn),
                                     memlet_str, newcode)
                # Add interstate edge assignment
                new_isedge.data.assignments[node.data] = newcode
            elif isinstance(input, nodes.AccessNode):
                memlet: mm.Memlet = in_edge.data
                if (memlet.src_subset and
                        not isinstance(sdfg.arrays[memlet.data], dt.Scalar)):
                    new_isedge.data.assignments[
                        node.data] = '%s[%s]' % (input.data, memlet.src_subset)
                else:
                    new_isedge.data.assignments[node.data] = input.data

            # Clean up all nodes after assignment was transferred
            new_state.remove_nodes_from(new_state.nodes())

    # Step 3: Scalar reads
    remove_scalar_reads(sdfg, {k: k for k in to_promote})

    # Step 4: Isolated nodes
    for state in sdfg.nodes():
        scalar_nodes = [
            n for n in state.nodes()
            if isinstance(n, nodes.AccessNode) and n.data in to_promote
        ]
        state.remove_nodes_from(
            [n for n in scalar_nodes if len(state.all_edges(n)) == 0])

    # Step 5: Data descriptor management
    for scalar in to_promote:
        desc = sdfg.arrays[scalar]
        sdfg.remove_data(scalar, validate=False)
        # If the scalar is already a symbol (e.g., as part of an array size),
        # do not re-add the symbol
        if scalar not in sdfg.symbols:
            sdfg.add_symbol(scalar, desc.dtype)

    # Step 6: Inter-state edge cleanup
    cleanup_re = {
        s: re.compile(fr'\b{re.escape(s)}\[.*?\]')
        for s in to_promote
    }
    promo = TaskletPromoterDict({k: k for k in to_promote})
    for edge in sdfg.edges():
        ise: InterstateEdge = edge.data
        # Condition
        if not edge.data.is_unconditional():
            if ise.condition.language is dtypes.Language.Python:
                for stmt in ise.condition.code:
                    promo.visit(stmt)
            elif ise.condition.language is dtypes.Language.CPP:
                for scalar in to_promote:
                    ise.condition = cleanup_re[scalar].sub(
                        scalar, ise.condition.as_string)

        # Assignments
        for aname, assignment in ise.assignments.items():
            for scalar in to_promote:
                if scalar in assignment:
                    ise.assignments[aname] = cleanup_re[scalar].sub(
                        scalar, assignment.strip())

    # Step 7: Indirection
    remove_symbol_indirection(sdfg)

    return to_promote
Пример #3
0
    def apply(self, graph: SDFGState, sdfg: SDFG) -> nodes.MapEntry:
        me = self.mapentry

        # Add new map within map
        mx = graph.exit_node(me)
        new_me, new_mx = graph.add_map('warp_tile',
                                       dict(__tid=f'0:{self.warp_size}'),
                                       dtypes.ScheduleType.GPU_ThreadBlock)
        __tid = symbolic.pystr_to_symbolic('__tid')
        for e in graph.out_edges(me):
            xfh.reconnect_edge_through_map(graph, e, new_me, True)
        for e in graph.in_edges(mx):
            xfh.reconnect_edge_through_map(graph, e, new_mx, False)

        # Stride and offset all internal maps
        maps_to_stride = xfh.get_internal_scopes(graph, new_me, immediate=True)
        for nstate, nmap in maps_to_stride:
            nsdfg = nstate.parent
            nsdfg_node = nsdfg.parent_nsdfg_node

            # Map cannot be partitioned across a warp
            if (nmap.range.size()[-1] < self.warp_size) == True:
                continue

            if nsdfg is not sdfg and nsdfg_node is not None:
                nsdfg_node.symbol_mapping['__tid'] = __tid
                if '__tid' not in nsdfg.symbols:
                    nsdfg.add_symbol('__tid', dtypes.int32)
            nmap.range[-1] = (nmap.range[-1][0], nmap.range[-1][1] - __tid,
                              nmap.range[-1][2] * self.warp_size)
            subgraph = nstate.scope_subgraph(nmap)
            subgraph.replace(nmap.params[-1], f'{nmap.params[-1]} + __tid')
            inner_map_exit = nstate.exit_node(nmap)
            # If requested, replicate maps with multiple dependent maps
            if self.replicate_maps:
                destinations = [
                    nstate.memlet_path(edge)[-1].dst
                    for edge in nstate.out_edges(inner_map_exit)
                ]

                for dst in destinations:
                    # Transformation will not replicate map with more than one
                    # output
                    if len(destinations) != 1:
                        break
                    if not isinstance(dst, nodes.AccessNode):
                        continue  # Not leading to access node
                    if not xfh.contained_in(nstate, dst, new_me):
                        continue  # Memlet path goes out of map
                    if not nsdfg.arrays[dst.data].transient:
                        continue  # Cannot modify non-transients
                    for edge in nstate.out_edges(dst)[1:]:
                        rep_subgraph = xfh.replicate_scope(
                            nsdfg, nstate, subgraph)
                        rep_edge = nstate.out_edges(
                            rep_subgraph.sink_nodes()[0])[0]
                        # Add copy of data
                        newdesc = copy.deepcopy(sdfg.arrays[dst.data])
                        newname = nsdfg.add_datadesc(dst.data,
                                                     newdesc,
                                                     find_new_name=True)
                        newaccess = nstate.add_access(newname)
                        # Redirect edges
                        xfh.redirect_edge(nstate,
                                          rep_edge,
                                          new_dst=newaccess,
                                          new_data=newname)
                        xfh.redirect_edge(nstate,
                                          edge,
                                          new_src=newaccess,
                                          new_data=newname)

            # If has WCR, add warp-collaborative reduction on outputs
            for out_edge in nstate.out_edges(inner_map_exit):
                dst = nstate.memlet_path(out_edge)[-1].dst
                if not xfh.contained_in(nstate, dst, new_me):
                    # Skip edges going out of map
                    continue
                if dst.desc(nsdfg).storage == dtypes.StorageType.GPU_Global:
                    # Skip shared memory
                    continue
                if out_edge.data.wcr is not None:
                    ctype = nsdfg.arrays[out_edge.data.data].dtype.ctype
                    redtype = detect_reduction_type(out_edge.data.wcr)
                    if redtype == dtypes.ReductionType.Custom:
                        raise NotImplementedError
                    credtype = ('dace::ReductionType::' +
                                str(redtype)[str(redtype).find('.') + 1:])

                    # One element: tasklet
                    if out_edge.data.subset.num_elements() == 1:
                        # Add local access between thread-local and warp reduction
                        name = nsdfg._find_new_name(out_edge.data.data)
                        nsdfg.add_scalar(
                            name,
                            nsdfg.arrays[out_edge.data.data].dtype,
                            transient=True)

                        # Initialize thread-local to global value
                        read = nstate.add_read(out_edge.data.data)
                        write = nstate.add_write(name)
                        edge = nstate.add_nedge(read, write,
                                                copy.deepcopy(out_edge.data))
                        edge.data.wcr = None
                        xfh.state_fission(nsdfg,
                                          SubgraphView(nstate, [read, write]))

                        newnode = nstate.add_access(name)
                        nstate.remove_edge(out_edge)
                        edge = nstate.add_edge(out_edge.src, out_edge.src_conn,
                                               newnode, None,
                                               copy.deepcopy(out_edge.data))
                        for e in nstate.memlet_path(edge):
                            e.data.data = name
                            e.data.subset = subsets.Range([(0, 0, 1)])

                        wrt = nstate.add_tasklet(
                            'warpreduce', {'__a'}, {'__out'},
                            f'__out = dace::warpReduce<{credtype}, {ctype}>::reduce(__a);',
                            dtypes.Language.CPP)
                        nstate.add_edge(newnode, None, wrt, '__a',
                                        Memlet(name))
                        out_edge.data.wcr = None
                        nstate.add_edge(wrt, '__out', out_edge.dst, None,
                                        out_edge.data)
                    else:  # More than one element: mapped tasklet
                        # Could be a parallel summation
                        # TODO(later): Check if reduction
                        continue
            # End of WCR to warp reduction

        # Make nested SDFG out of new scope
        xfh.nest_state_subgraph(sdfg, graph,
                                graph.scope_subgraph(new_me, False, False))

        return new_me