Пример #1
0
def _test_half(veclen):
    """ Tests a set of elementwise operations on a vector half type. """
    _config()

    @dace.program
    def halftest(A: dace.float16[N], B: dace.float16[N]):
        return A * B + A

    A = np.random.rand(24).astype(np.float16)
    B = np.random.rand(24).astype(np.float16)
    sdfg = halftest.to_sdfg()
    sdfg.name = sdfg.name + str(veclen)
    sdfg.apply_strict_transformations()
    sdfg.apply_gpu_transformations()

    # Apply vectorization on each map and count applied
    applied = 0
    for xform in Optimizer(sdfg).get_pattern_matches(patterns=Vectorization,
                                                     options=dict(
                                                         vector_len=veclen,
                                                         postamble=False)):
        xform.apply(sdfg)
        applied += 1
    assert applied == 2

    out = sdfg(A=A, B=B, N=24)
    assert np.allclose(out, A * B + A)
compute_paths()
with open("/Users/benediktschesch/MyEnv/Vectorization_paths.pkl",
          "rb") as fp:  # Unpickling
    paths = pickle.load(fp)
#paths = paths[0:20]
count = 0
data_points = []
max_free_symbols = 0
max_params = 0
for file in tqdm(paths):
    try:
        sdfg = dace.SDFG.from_file(file)
    except:
        print("Not Valid SDFG at: " + str(file))
        continue
    opt = Optimizer(sdfg)
    vectorization_map_entry = [
        i.query_node(sdfg.sdfg_list[i.sdfg_id], i._map_entry)
        for i in opt.get_pattern_matches(patterns=[Vectorization])
    ]
    for node, state in sdfg.all_nodes_recursive():
        if isinstance(node, MapEntry):
            dic_training = {}
            if has_dynamic_map_inputs(state, node):
                continue
            tasklet = state.out_edges(node)[0].dst
            if not isinstance(tasklet, Tasklet):
                continue
            free_symbols = set()
            #Get the Free symbols
            for Memlet in state.in_edges(tasklet) + state.out_edges(tasklet):
def main():
    print("\n ==== Program begins ====")
    print("\n There are %d CPUs on this machine." % multiprocessing.cpu_count())
    
    global MatrixA
    global MatrixB
    global MatrixC
    global Dimension
    global _real
    global _imag
    global MaxRndVal
    global Elapsed
    global ParallelElapsed
    
    # Arugments
    parser = argparse.ArgumentParser()
    parser.add_argument("-F", type=complex, nargs="?", default=Dimension)
    parser.add_argument("-G", type=complex, nargs="?", default=Dimension)
    parser.add_argument("-H", type=complex, nargs="?", default=Dimension)
    args = vars(parser.parse_args())

    # Prepare Arugments
    f = args["F"]
    g = args["G"]
    h = args["H"]

    while True:
        Dimension = int(input("\n Enter Dimension (minimum 4): "))
        if (Dimension >= 4):
            break
        print("\n Invalid dimension. Please re-enter (minimum 4).")
        
    # set the dimensions
    MatrixA = set_dimension(Dimension)
    MatrixB = set_dimension(Dimension)
    MatrixC = set_dimension(Dimension)

    while True:
        _real = int(input("\n Enter Random Maximum Real Value (minimum 10): "))
        if (_real >= 10):
            break
        print("\n Invalid random maximum value. Please re-enter (minimum 10).")

    while True:
        _imag = int(input("\n Enter Random Maximum Imaginary Value (minimum 10): "))
        if (_imag >= 10):
            break
        print("\n Invalid random maximum imaginary value. Please re-enter (minimum 10).")

    MaxRndVal = complex(_real, _imag)

    A = set_random_value(MatrixA, Dimension, MaxRndVal)
    B = set_random_value(MatrixA, Dimension, MaxRndVal)
    C = set_random_value(MatrixC, Dimension, 0)

    # Display First Matrix Multiply Processes - DaCe
    print("\n DaCe - MapReduce Process 0...")

    # display matrix
    print("\n Display Matrix A - DaCe")
    print(A)
    print("\n Display Matrix B - DaCe")
    print(B)
    
    ticmap = time.time()
    # matrix non-parallel multiplication - DaCe using gemm method
    print("\n Starting DaCe MapReduce Process 0: matrix multiplicationsdfg.optimize() - DaCe using map reduce...")
    matmul_Map_Final(A, B, C)
    tocmap = time.time()
    time_takenmap = tocmap - ticmap  # time in s
    
    # Apply Transformations
    sdfg = matmul_Map_Final.to_sdfg()
    sdfg.apply_strict_transformations()
    sdfg.apply_transformations([MapFusion, MapWCRFusion, StateFusion])
    sdfg.apply_transformations_repeated([MapFusion, MapWCRFusion, StateFusion])
    
    # Feed Symbols
    sdfg(A=A, B=B, C=C, F=f, G=g, H=h) 
    
    # Enumerating Matches
    for xform in Optimizer(sdfg).get_pattern_matches(patterns=[MapTiling]):
        print("Match:", xform.print_match(sdfg))
        
    # Construct subgraph pattern (MapExit -> AccessNode -> MapEntry)
    pattern = sdutil.node_path_graph(dace.nodes.MapExit, dace.nodes.AccessNode,
                                      dace.nodes.MapEntry)
    # Loop over matches
    for subgraph in enumerate_matches(sdfg, pattern):
        print("Match found in state", subgraph.graph.label, ". Nodes:", subgraph.nodes())
        

    # Interactive Optimization
    sdfg.optimize()
    
    # Display non-parallel multiplication - DaCe elapsed time
    print("\n Time taken - DaCe MapReduce x1 on CPU - Serial (in ms) = {}".format(time_takenmap * 1000))

    # Display matrix multiplication elapsed time
    print("\n Matrix multiplication DACE MapReduce - elapsed time: {}".format(time_takenmap), "s")    

    # display result matrix
    print("\n Display Result Matrix C - DaCe")
    print(C)

    # set random value in the matrix
    MatrixA = set_random_value(MatrixA, Dimension, MaxRndVal)
    MatrixB = set_random_value(MatrixB, Dimension, MaxRndVal)
    MatrixC = set_random_value(MatrixC, Dimension, 0)  # because of result matrix must be zero

    # Display Second Matrix Multiply Processes - non-DaCe
    print("\n Non-DaCe Matrix Multiplication Process 1 and 2 Review....")

    # display matrix
    print("\n Display Matrix A")
    print(MatrixA)
    print("\n Display Matrix B")
    print(MatrixB)

    # matrix non-parallel multiplication
    print("\n Starting Process 1: non-parallel matrix multiplication ...")
    Elapsed = matrix_multiplication(Dimension)

    # Display non-parallel multiplication elapsed time
    print("\n Non-parallel multiplication elapsed time: ", Elapsed, "ms")

    # matrix parallel multiplication
    print("\n Starting Process 2: parallel matrix multiplication...")
    ParallelElapsed = matrix_parallel_multiplication(Dimension)

    # Display parallel multiplication elapsed time
    print("\n Parallel multiplication elapsed time: ", ParallelElapsed, "ms")

    # display result matrix
    print("\n Display Result Matrix C")
    print(MatrixC)

    # difference of two process
    print("\n Difference of non-DACE process 1 and 2 is: ", (Elapsed * 1000) - (ParallelElapsed * 1000), "ms")

    # difference of two process
    print("\n Difference of non-DACE process 1 and 2 is: ", (Elapsed) - (ParallelElapsed), "s")

    expected = MatrixA @ MatrixB
           

    diff = np.linalg.norm(MatrixC - expected)

    print('\n Difference:', diff)

    # exit(0 if diff <= 1e-5 else 1)
    
    assert diff < 1e-5

    print("\n ==== Program end ==== \n")