Пример #1
0
        b = a

    @dp.map(_[0:W])
    def compute_tmp_again(i):
        a << tmp[i]
        b >> tmp[i]
        b = a + a

    @dp.map(_[0:W])
    def compute_output(i):
        a << tmp[i]
        b >> B[i]
        b = a + a


if __name__ == '__main__':
    W.set(3)

    A = dp.ndarray([W])
    B = dp.ndarray([W])

    A[:] = np.mgrid[0:W.get()]
    B[:] = dp.float32(0.0)

    raw_prog(A, B)

    diff = np.linalg.norm(4 * A - B) / W.get()
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
Пример #2
0
W = dp.symbol('W')


@dp.program
def indirection(A, x, B):
    @dp.map(_[0:W])
    def ind(i):
        bla << A[x[i]]
        out >> B[i]
        out = bla


if __name__ == '__main__':
    W.set(5)

    A = dp.ndarray([W * W])
    B = dp.ndarray([W])
    x = dp.ndarray([W], dtype=dp.uint32)

    A[:] = np.arange(10, 10 + W.get() * W.get())
    B[:] = dp.float32(0)
    x[:] = np.random.randint(0, W.get() * W.get(), W.get())

    indirection(A, x, B, W=W)

    print(x)
    print(B)
    B_ref = np.array([A[x[i]] for i in range(W.get())], dtype=B.dtype)
    diff = np.linalg.norm(B - B_ref)
    exit(0 if diff == 0 else 1)
Пример #3
0
    dace.reduce(lambda a, b: a + b, tmp, sum)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("W", type=int, nargs="?", default=128)
    parser.add_argument("H", type=int, nargs="?", default=128)
    args = vars(parser.parse_args())

    W.set(args["W"])
    H.set(args["H"])

    print('Map-Reduce Test %dx%d' % (W.get(), H.get()))

    A = dace.ndarray([1, H, 1, W, 1], dtype=dace.float32)
    B = dace.ndarray([H, W], dtype=dace.float32)
    res = dace.ndarray([1], dtype=dace.float32)
    A[:] = np.random.rand(1, H.get(), 1, W.get(), 1).astype(dace.float32.type)
    B[:] = dace.float32(0)
    res[:] = dace.float32(0)

    mapreduce_test_3(A, B, res)

    diff = np.linalg.norm(5 * A.reshape((H.get(), W.get())) - B) / (H.get() *
                                                                    W.get())
    diff_res = abs((np.sum(B) - res[0])).view(type=np.ndarray)
    print("Difference:", diff, diff_res)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 and diff_res <= 1 else 1)
Пример #4
0
    A_row[-1] = dace.uint32(nnz_last_row)
    A_row = np.cumsum(A_row, dtype=np.uint32)

    # Fill column data
    for i in range(H.get() - 1):
        A_col[nnz_per_row*i:nnz_per_row*(i+1)] = \
            np.sort(np.random.choice(W.get(), nnz_per_row, replace=False))
    # Fill column data for last row
    A_col[nnz_per_row * (H.get() - 1):] = np.sort(
        np.random.choice(W.get(), nnz_last_row, replace=False))

    A_val[:] = np.random.rand(nnz.get()).astype(dace.float32.type)
    #########################

    x[:] = np.random.rand(W.get()).astype(dace.float32.type)
    b[:] = dace.float32(0)

    # Setup regression
    A_sparse = scipy.sparse.csr_matrix((A_val, A_col, A_row),
                                       shape=(H.get(), W.get()))

    spmv(A_row, A_col, A_val, x, b)

    if dace.Config.get_bool('profiling'):
        dace.timethis('spmv', 'scipy', 0, A_sparse.dot, x)

    diff = np.linalg.norm(A_sparse.dot(x) - b) / float(H.get())
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
Пример #5
0
@dace.program
def prog(A, B):
    no = dace.define_local([number], dace.float32)
    number = dace.define_local([W], dace.float32)

    f(A, number)

    @dace.map(_[0:W])
    def bla2(i):
        inp << number[i]
        out >> B[i]
        out = 2 * inp


if __name__ == '__main__':
    W.set(3)

    A = dace.ndarray([W])
    B = dace.ndarray([W])

    A[:] = np.mgrid[0:W.get()]
    B[:] = dace.float32(0.0)

    prog(A, B)

    diff = np.linalg.norm(4 * A - B) / W.get()
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)
Пример #6
0
import numpy as np

import dace as dp
from dace.sdfg import SDFG
from dace.memlet import Memlet

# Constructs an SDFG with two consecutive tasklets
if __name__ == '__main__':
    print('Multidimensional offset and stride test')
    # Externals (parameters, symbols)
    N = dp.symbol('N')
    N.set(20)
    input = dp.ndarray([N, N], dp.float32)
    output = dp.ndarray([4, 3], dp.float32)
    input[:] = (np.random.rand(N.get(), N.get()) * 5).astype(dp.float32.type)
    output[:] = dp.float32(0)

    # Construct SDFG
    mysdfg = SDFG('offset_stride')
    state = mysdfg.add_state()
    A_ = state.add_array('A', [6, 6],
                         dp.float32,
                         offset=[2, 3],
                         strides=[N, N])
    B_ = state.add_array('B', [3, 2],
                         dp.float32,
                         offset=[-1, -1],
                         strides=[4, 3])

    map_entry, map_exit = state.add_map('mymap', [('i', '1:4'), ('j', '1:3')])
    tasklet = state.add_tasklet('mytasklet', {'a'}, {'b'}, 'b = a')
Пример #7
0
    def reset_tmp(y, x):

        out >> tmp[y, x]
        out = dace.float32(0.0)
Пример #8
0
    dace.reduce(lambda a, b: a + b, A, red2)
    dace.reduce(lambda a, b: a + b, B[2:H - 2, 5, :], red1[0])
    dace.reduce(lambda a, b: a + b, B[3:H - 3, 5:7, :], red1[1:], axis=(2, 0))
    dace.reduce(lambda a, b: a - b, B[2:H - 2, 5, :], red1[0])


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("W", type=int, nargs="?", default=20)
    parser.add_argument("H", type=int, nargs="?", default=20)
    args = vars(parser.parse_args())

    A = dace.ndarray([W, H], dtype=dace.float32)
    B = dace.ndarray([H, W, H], dtype=dace.float32)
    red1 = dace.ndarray([3], dtype=dace.float32)
    red2 = dace.ndarray([1], dtype=dace.float32)

    W.set(args["W"])
    H.set(args["H"])

    print('Conflict Resolution Test %dx%d' % (W.get(), H.get()))

    A[:] = np.random.rand(H.get(), W.get()).astype(dace.float32.type)
    B[:] = np.random.rand(H.get(), W.get(), H.get()).astype(dace.float32.type)
    red1[:] = dace.float32(0)
    red2[:] = dace.float32(0)

    confres_test.compile(A, B, red1, red2)

    print("==== Program end ====")
Пример #9
0
def dot(A: dace.float32[N], B: dace.float32[N], out: dace.float32[1]):
    @dace.map
    def product(i: _[0:N]):
        a << A[i]
        b << B[i]
        o >> out(1, lambda x, y: x + y)
        o = a * b


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("N", type=int, nargs="?", default=64)
    args = vars(parser.parse_args())

    N.set(args["N"])
    A = dace.ndarray([N], dtype=dace.float32)
    B = dace.ndarray([N], dtype=dace.float32)
    out_AB = dace.scalar(dace.float32)

    print('Dot product %d' % (N.get()))

    A[:] = np.random.rand(N.get()).astype(dace.float32.type)
    B[:] = np.random.rand(N.get()).astype(dace.float32.type)
    out_AB[0] = dace.float32(0)
    dot(A, B, out_AB)

    diff_ab = np.linalg.norm(np.dot(A, B) - out_AB) / float(N.get())
    print("Difference (A*B):", diff_ab)
    exit(0 if (diff_ab <= 1e-5) else 1)
Пример #10
0
               kernel[0, 2] * input[0, 2] + kernel[1, 0] * input[1, 0] +
               kernel[1, 1] * input[1, 1] + kernel[1, 2] * input[1, 2] +
               kernel[2, 0] * input[2, 0] + kernel[2, 1] * input[2, 1] +
               kernel[2, 2] * input[2, 2])


if __name__ == "__main__":
    print("==== Program start ====")

    print('Conv2D %dx%d' % (N.get(), N.get()))

    A = dace.ndarray([N, N], dtype=dace.float32)
    B = dace.ndarray([N, N], dtype=dace.float32)

    # Initialize arrays: Randomize A, zero B
    A[:] = dace.float32(0)
    B[:] = dace.float32(0)
    A[1:N.get() - 1, 1:N.get() - 1] = np.random.rand(dace.eval(N - 2),
                                                     dace.eval(N - 2)).astype(
                                                         dace.float32.type)
    regression = np.ndarray([N.get() - 2, N.get() - 2], dtype=np.float32)
    regression[:] = A[1:N.get() - 1, 1:N.get() - 1]

    #print(A.view(type=np.ndarray))

    #############################################
    # Run DaCe program

    sdfg = stencil3x3.to_sdfg()
    sdfg.add_constants({'kernel': KERNEL})
    sdfg(A=A, B=B, N=N)
Пример #11
0
N = dace.symbol('N')


@dace.program(dace.float32[N], dace.float32[N])
def cudahello(V, Vout):
    # Transient variable
    @dace.map(_[0:N])
    def multiplication(i):
        in_V << V[i]
        out >> Vout[i]
        out = in_V * 2.0


if __name__ == "__main__":
    N.set(52)

    print('Vector double CUDA %d' % (N.get()))

    V = dace.ndarray([N], dace.float32)
    Vout = dace.ndarray([N], dace.float32)
    V[:] = np.random.rand(N.get()).astype(dace.float32.type)
    Vout[:] = dace.float32(0)

    cudahello(V, Vout)

    diff = np.linalg.norm(2 * V - Vout) / N.get()
    print("Difference:", diff)
    print("==== Program end ====")
    exit(0 if diff <= 1e-5 else 1)