def test_job_delayed_with_dataflowenvironment(self): runner = FakeRunner() dfe = dfp.JobDataflow() pool = 'test' # decorate functions... generate_pricedata = dfp.job_delayed(runner)(self.generate_pricedata) generate_fundata = dfp.job_delayed(runner)(self.generate_fundata) generate_riskdata = dfp.job_delayed(runner)(self.generate_riskdata) generate_predictors = dfp.job_delayed(runner)(self.generate_predictors) # declare the dataflow dfe.add_task('pricedata', generate_pricedata(pool)) dfe.add_task('fundata', generate_fundata(pool)) dfe.add_task('riskdata', generate_riskdata(pool, 'risk'), depends_on=['pricedata']) dfe.add_task('pred', generate_predictors(pool, 'risk'), depends_on=['pricedata', 'fundata', 'riskdata']) dfe.start() dfe() dfe.pprint() assert dfe.data == { 'riskdata': [3], 'fundata': [1], 'sum_alldata': [2, 1, 3, 4], 'pricedata': [2], 'pred': [4] }
def test_dask_workflow_with_explicit_parallel_sub_tasks(self): """ We do explicit Parrallel call for some tasks """ import dask # runner = GlobalFakeRunner() runner = FakeRunner() # decorate functions... generate_pricedata = dfp.job_delayed(runner)(self.generate_pricedata) generate_fundata = dfp.job_delayed(runner)(self.generate_fundata) generate_riskdata = dfp.job_delayed(runner)(self.generate_riskdata) generate_predictors = dfp.job_delayed(runner)(self.generate_predictors) generate_positions = dfp.delayed(self.generate_positions) # from dask.multiprocessing import get # from dask.threaded import get from dask. async import get_sync as get # declare the dataflow dsk = dict() pools = ['pool1', 'pool2'] for pool in pools: dsk[(pool, 'pricedata')] = generate_pricedata(pool), dsk[(pool, 'fundata')] = generate_fundata(pool), dsk[(pool, 'riskdata')] = generate_riskdata(pool, 'risk'), (pool, 'pricedata') dsk[(pool, 'pred')] = generate_predictors(pool, 'risk'), [ (pool, t) for t in ['pricedata', 'fundata', 'riskdata'] ] dsk[(pool, 'positions')] = dfp.ParallelJobs(runner)([ generate_positions(pool, 'risk', 'momentum', 'markowitz_aversion', max_risk=max_risk) for max_risk in range(10) ]), (pool, 'pred') # get(dsk, [(pool,'pred') for pool in pools]) # executes in parallel # results = get(dsk, dsk.keys()) jobids = dict(zip(dsk.keys(), get(dsk, dsk.keys()))) assert len(jobids) == 10 assert jobids[('pool2', 'positions')] == [ 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] get(dsk, ('pool2', 'positions')) get(dsk, ('pool2', 'positions'))
def test_job_delayed_with_dataflowenvironment_parallel(self): runner = FakeRunner() pool = 'test' # decorate functions... generate_pricedata = dfp.job_delayed(runner)(self.generate_pricedata) generate_fundata = dfp.job_delayed(runner)(self.generate_fundata) generate_riskdata = dfp.job_delayed(runner)(self.generate_riskdata) generate_predictors = dfp.job_delayed(runner)(self.generate_predictors) # declare the dataflow env_dict = dict() pools = ['pool1', 'pool2'] for pool in pools: dfe = dfp.JobDataflow() dfe.add_task('pricedata', generate_pricedata(pool)) dfe.add_task('fundata', generate_fundata(pool)) dfe.add_task('riskdata', generate_riskdata(pool, 'risk'), depends_on=['pricedata']) dfe.add_task('pred', generate_predictors(pool, 'risk'), depends_on=['pricedata', 'fundata', 'riskdata']) # dfe.return_alldata() # dfe.start() # dfe() # sdfsdfsd env_dict[pool] = dfe dfe = dfp.JobDataflow() for pool in pools: dfe.add_task(pool, env_dict[pool]) # dfe.return_alldata() dfe.start(develop=False) jobs = dfe() assert set(jobs) == set([0, 1, 2, 3, 5, 6, -1]) # dfe.pprint() print dfe.data assert dfe.data == { 'pool2': [2, 1, 3, -1], 'pool1': [6, 5, 0, 0], 'sum_alldata': [6, 5, 0, 0, 2, 1, 3, -1] }
def test_dask_workflow(self): import dask # runner = GlobalFakeRunner() runner = FakeRunner() # decorate functions... generate_pricedata = dfp.job_delayed(runner)(self.generate_pricedata) generate_fundata = dfp.job_delayed(runner)(self.generate_fundata) generate_riskdata = dfp.job_delayed(runner)(self.generate_riskdata) generate_predictors = dfp.job_delayed(runner)(self.generate_predictors) # declare the dataflow dsk = dict() pools = ['pool1', 'pool2'] for pool in pools: dsk[(pool, 'pricedata')] = generate_pricedata(pool), dsk[(pool, 'fundata')] = generate_fundata(pool), dsk[(pool, 'riskdata')] = generate_riskdata(pool, 'risk'), (pool, 'pricedata') dsk[(pool, 'pred')] = generate_predictors(pool, 'risk'), [ (pool, t) for t in ['pricedata', 'fundata', 'riskdata'] ] # from dask.multiprocessing import get # from dask.threaded import get from dask. async import get_sync as get # get(dsk, [(pool,'pred') for pool in pools]) # executes in parallel # results = get(dsk, dsk.keys()) import pandas as pd jobids = pd.DataFrame(dict(zip(dsk.keys(), get(dsk, dsk.keys())))) assert jobids.shape == (1, 8) assert set(jobids.values.flatten().tolist()) == set( [0, 1, 3, 5, 6, 7, -1]) assert set(jobids.loc[slice(None), (slice(None), 'fundata')].values.flatten().tolist()) == set( [7, 3])
def test_simple_dict_workflow(self): runner = FakeRunner() # decorate functions... generate_pricedata = dfp.job_delayed(runner)(self.generate_pricedata) generate_fundata = dfp.job_delayed(runner)(self.generate_fundata) generate_riskdata = dfp.job_delayed(runner)(self.generate_riskdata) generate_predictors = dfp.job_delayed(runner)(self.generate_predictors) # declare the dataflow dfd = dict() pools = ['pool1', 'pool2'] for pool in pools: dfd[pool] = dict() dfd[pool]['pricedata'] = generate_pricedata(pool)() dfd[pool]['fundata'] = generate_fundata(pool)() dfd[pool]['riskdata'] = generate_riskdata(pool, 'risk')( dfd[pool]['pricedata']) dfd[pool]['pred'] = generate_predictors( pool, 'risk')(dfd[pool]['pricedata'] + dfd[pool]['fundata'] + dfd[pool]['riskdata']) assert dfd == { 'pool2': { 'riskdata': [7], 'fundata': [6], 'pricedata': [5], 'pred': [-1] }, 'pool1': { 'riskdata': [0], 'fundata': [2], 'pricedata': [1], 'pred': [0] } }
def test_async_dataflowenv(self): runner = FakeRunner() adfe = dfp.AsyncDataFlowEnv(runner=runner) pool = 'test' adfe.add_task('pricedata', dfp.delayed(self.generate_pricedata)(pool)) adfe.add_task('fundata', dfp.delayed(self.generate_fundata)(pool)) adfe.add_task('riskdata', dfp.delayed(self.generate_riskdata)(pool, 'risk'), depends_on=['pricedata']) adfe.add_task('pred', dfp.delayed(self.generate_predictors)(pool, 'risk'), depends_on=['pricedata', 'fundata', 'riskdata']) # adfe.start() adfe() # adfe.pprint() print adfe.data assert adfe.data == { 'riskdata': [3], 'fundata': [1], 'sum_alldata': [2, 1, 3, 4], 'pricedata': [2], 'pred': [4] }
def test_job_delayed(self): runner = FakeRunner() pool = 'test' func = dfp.job_delayed(runner)(self.generate_pricedata)(pool) func()
def test_dask_workflow_and_paramenter_sweeping(self): """ We test a workflow with dask """ import dask # runner = GlobalFakeRunner() runner = FakeRunner() # decorate functions... generate_pricedata = dfp.job_delayed(runner)(self.generate_pricedata) generate_fundata = dfp.job_delayed(runner)(self.generate_fundata) generate_riskdata = dfp.job_delayed(runner)(self.generate_riskdata) generate_predictors = dfp.job_delayed(runner)(self.generate_predictors) generate_positions = dfp.job_delayed(runner)(self.generate_positions) # declare the dataflow dsk = dict() pools = ['pool1', 'pool2', 'pool3'] for pool in pools: dsk[(pool, 'pricedata')] = generate_pricedata(pool), dsk[(pool, 'fundata')] = generate_fundata(pool), dsk[(pool, 'riskdata')] = generate_riskdata(pool, 'risk'), (pool, 'pricedata') dsk[(pool, 'pred')] = generate_predictors(pool, 'risk'), [ (pool, t) for t in ['pricedata', 'fundata', 'riskdata'] ] for max_risk in range(3): dsk[(pool, 'positions', ('max_risk', max_risk))] = generate_positions( pool, 'risk', 'momentum', 'markowitz_aversion', max_risk=max_risk), (pool, 'pred') # from dask.multiprocessing import get # from dask.threaded import get from dask. async import get_sync as get # get(dsk, [(pool,'pred') for pool in pools]) # executes in parallel # results = get(dsk, dsk.keys()) # Execute (to convert in other formats): dot mydask.dot -Teps > mydask.eps import pandas as pd jobids = dict(zip(dsk.keys(), get(dsk, dsk.keys()))) jobids_s = pd.DataFrame(jobids).ix[0] assert len(jobids) == 21 status = runner.get_status(jobids) assert status == { ('pool3', 'pred'): 'valid', ('pool2', 'positions', ('max_risk', 2)): 'invalid', ('pool2', 'riskdata'): 'valid', ('pool3', 'riskdata'): 'valid', ('pool3', 'pricedata'): 'valid', ('pool3', 'fundata'): 'valid', ('pool2', 'positions', ('max_risk', 0)): 'invalid', ('pool1', 'pred'): 'pending', ('pool2', 'pred'): 'invalid', ('pool1', 'positions', ('max_risk', 1)): 'pending', ('pool3', 'positions', ('max_risk', 0)): 'valid', ('pool3', 'positions', ('max_risk', 2)): 'valid', ('pool2', 'fundata'): 'valid', ('pool1', 'positions', ('max_risk', 2)): 'pending', ('pool1', 'positions', ('max_risk', 0)): 'pending', ('pool1', 'riskdata'): 'pending', ('pool2', 'pricedata'): 'valid', ('pool1', 'pricedata'): 'valid', ('pool1', 'fundata'): 'valid', ('pool3', 'positions', ('max_risk', 1)): 'valid', ('pool2', 'positions', ('max_risk', 1)): 'invalid' } # Plot the graph with color corresponding to the status of jobs from dask.dot import dot_graph # dot_graph(dsk) # sdfsdf def get_status_dot_attributes(v): if v == 'valid': return dict(style='filled', color='lightgreen') if v == 'invalid': return dict(style='filled', color='red') if v == 'pending': return dict(style='filled', color='lightgrey') dot_status = { k: get_status_dot_attributes(v) for k, v in status.iteritems() } dot_graph(dsk, filename='dask_graph', format='dot', data_attributes=dot_status, function_attributes=dot_status) # dot_graph(dsk, filename='dask_graph', format='png', data_attributes=dot_status, function_attributes=dot_status) # dot_graph(dsk, filename='dask_graph', format='pdf', data_attributes=dot_status, function_attributes=dot_status) dot_graph(dsk, filename='dask_graph', format='svg', data_attributes=dot_status, function_attributes=dot_status)
def test_job_delayed_with_dataflowenvironment_parallel_develop(self): runner = FakeRunner() pool = 'test' # decorate functions... generate_pricedata = dfp.job_delayed(runner)(self.generate_pricedata) generate_fundata = dfp.job_delayed(runner)(self.generate_fundata) generate_riskdata = dfp.job_delayed(runner)(self.generate_riskdata) generate_predictors = dfp.job_delayed(runner)(self.generate_predictors) # declare the dataflow dfe_dict = dict() pools = ['pool1', 'pool2'] for pool in pools: dfe = dfp.JobDataflow() dfe.add_task('pricedata', generate_pricedata(pool)) dfe.add_task('fundata', generate_fundata(pool)) dfe.add_task('riskdata', generate_riskdata(pool, 'risk'), depends_on=['pricedata']) dfe.add_task('pred', generate_predictors(pool, 'risk'), depends_on=['pricedata', 'fundata', 'riskdata']) # dfe.return_alldata() dfe.start() # dfe() # sdfsdfsd dfe_dict[pool] = dfe dfe = dfp.JobDataflow() for pool in pools: dfe.add_task(pool, dfe_dict[pool]) # dfe.return_alldata() # dfe.start(develop=True) jobs = dfe() assert set(jobs) == set([0, 1, 2, 3, 4, 5, -1]) # dfe.pprint() print dfe.data assert dfe.data == { ('pool1', 'sum_alldata'): [3, 4, 0, 0], ('pool2', 'riskdata'): [5], ('pool2', 'fundata'): [2], ('pool2', 'pricedata'): [1], ('pool1', 'pred'): [0], ('pool2', 'pred'): [-1], ('pool2', 'sum_alldata'): [1, 2, 5, -1], 'sum_alldata': [3, 4, 0, 0, 1, 2, 5, -1], ('pool1', 'riskdata'): [0], ('pool1', 'pricedata'): [3], ('pool1', 'fundata'): [4] } # Try to convert the graph to a dask graph dsk = dfe.to_dask() from dask. async import get_sync as get runner.JOBID = 0 res = dict(zip(dsk.keys(), get(dsk, dsk.keys()))) assert set(res.keys()) == set(dfe.data.keys()) assert len(res.keys()) == len(dfe.data.keys()) set(res.keys()) - set(dfe.data.keys()) set(dfe.data.keys()) - set(res.keys()) # import pandas as pd # res_dfe = pd.DataFrame(dfe.data).ix[0] # res_dask = pd.DataFrame(res).ix[0] # df_comp = pd.concat([res_dfe, res_dask], keys=['dfe','dask'], axis=1) g = dfp.dask_to_dataflow(dsk) assert len(g) == len(dfe) assert set(g.nodes()) == set(dfe.nodes()) assert len(g()) == len(dfe())