Пример #1
0
def test_rk_codegen_fancy():
    """Test whether Fortran code generation with lots of fancy features for the
    Runge-Kutta timestepper works.
    """

    component_id = 'y'
    rhs_function = '<func>y'
    state_filter_name = 'state_filter_y'

    stepper = ODE23MethodBuilder(component_id, use_high_order=True,
            state_filter_name=state_filter_name)

    from dagrt.function_registry import (
            base_function_registry, register_ode_rhs,
            register_function, UserType)
    freg = register_ode_rhs(base_function_registry, component_id,
                            identifier=rhs_function)
    freg = freg.register_codegen(rhs_function, "fortran",
            f.CallCode("""
                <%

                igrid = declare_new("integer", "igrid")
                i = declare_new("integer", "i")

                %>

                do ${igrid} = 1, region%n_grids
                  do ${i} = 1, region%n_grid_dofs(${igrid})
                    ${result}(${igrid})%conserved_var(${i}) = &
                     -2*${y}(${igrid})%conserved_var(${i})
                  end do
                end do

                """))
    freg = register_function(freg, "notify_pre_state_update", ("updated_component",))
    freg = freg.register_codegen("notify_pre_state_update", "fortran",
            f.CallCode("""
                write(*,*) 'before state update'
                """))
    freg = register_function(
            freg, "notify_post_state_update", ("updated_component",))
    freg = freg.register_codegen("notify_post_state_update", "fortran",
            f.CallCode("""
                write(*,*) 'after state update'
                """))

    freg = register_function(freg, "<func>"+state_filter_name, ("y",),
            result_names=("result",), result_kinds=(UserType("y"),))
    freg = freg.register_codegen("<func>"+state_filter_name, "fortran",
            f.CallCode("""
                ! mess with state
                <%

                igrid = declare_new("integer", "igrid")
                i = declare_new("integer", "i")

                %>

                do ${igrid} = 1, region%n_grids
                  do ${i} = 1, region%n_grid_dofs(${igrid})
                    ${result}(${igrid})%conserved_var(${i}) = &
                     0.95*${y}(${igrid})%conserved_var(${i})
                  end do
                end do

                """))

    code = stepper.generate()

    codegen = f.CodeGenerator(
            "RKMethod",
            user_type_map={
                component_id: f.ArrayType(
                    "region%n_grids",
                    index_vars="igrid",
                    element_type=f.StructureType(
                        "sim_grid_state_type",
                        (
                            ("conserved_var", f.PointerType(
                                f.ArrayType(
                                    ("region%n_grid_dofs(igrid)",),
                                    f.BuiltinType('real (kind=8)')))),
                        )))
                },
            function_registry=freg,
            module_preamble="""
                use sim_types
                use timing

                """,
            call_before_state_update="notify_pre_state_update",
            call_after_state_update="notify_post_state_update",
            extra_arguments="region",
            extra_argument_decl="""
                type(region_type), pointer :: region
                """,
            parallel_do_preamble="!dir$ simd",
            emit_instrumentation=True,
            timing_function="get_time")

    code_str = codegen(code)
    print(code_str)

    run_fortran([
        ("sim_types.f90", read_file("sim_types.f90")),
        ("timing.f90", read_file("timing.f90")),
        ("rkmethod.f90", code_str),
        ("test_fancy_rk.f90", read_file("test_fancy_rk.f90")),
        ])
Пример #2
0
def test_multirate_codegen(min_order, method_name):
    from leap.multistep.multirate import TwoRateAdamsBashforthMethodBuilder

    stepper = TwoRateAdamsBashforthMethodBuilder(
            method_name, min_order, 4,
            slow_state_filter_name="slow_filt",
            fast_state_filter_name="fast_filt",
            # should pass with either, let's alternate by order
            # static_dt=True is 'more finnicky', so use that at min_order=5.
            static_dt=True if min_order % 2 == 1 else False,
            hist_consistency_threshold=1e-8,
            early_hist_consistency_threshold="1.25e3 * <dt>**%d" % min_order)

    # Early consistency threshold checked for convergence
    # with timestep change - C. Mikida, 2/6/18 (commit hash 2e6ca077)

    # With method 5-Fqs (limiting case), the following maximum relative
    # errors were observed:
    # for dt = 0.0384: 1.03E-04
    # for dt = 0.0128: 5.43E-08

    # Reported relative errors motivate constant factor of 1.25e3 for early
    # consistency threshold

    code = stepper.generate()

    from dagrt.function_registry import (
            base_function_registry, register_ode_rhs,
            UserType, register_function)

    freg = base_function_registry
    for func_name in [
            "<func>s2s",
            "<func>f2s",
            "<func>s2f",
            "<func>f2f",
            ]:
        component_id = {
                "s": "slow",
                "f": "fast",
                }[func_name[-1]]
        freg = register_ode_rhs(freg, identifier=func_name,
                output_type_id=component_id,
                input_type_ids=("slow", "fast"),
                input_names=("s", "f"))

    freg = freg.register_codegen("<func>s2f", "fortran",
        f.CallCode("""
            ${result} = (sin(2d0*${t}) - 1d0)*${s}
            """))
    freg = freg.register_codegen("<func>f2s", "fortran",
      f.CallCode("""
          ${result} = (sin(2d0*${t}) + 1d0)*${f}
          """))
    freg = freg.register_codegen("<func>f2f", "fortran",
      f.CallCode("""
          ${result} = cos(2d0*${t})*${f}
          """))
    freg = freg.register_codegen("<func>s2s", "fortran",
      f.CallCode("""
          ${result} = -cos(2d0*${t})*${s}
          """))

    freg = register_function(freg, "<func>slow_filt", ("arg",),
            result_names=("result",), result_kinds=(UserType("slow"),))
    freg = freg.register_codegen("<func>slow_filt", "fortran",
            f.CallCode("""
                ! mess with state
                ${result} = ${arg}
                """))

    freg = register_function(freg, "<func>fast_filt", ("arg",),
            result_names=("result",), result_kinds=(UserType("fast"),))
    freg = freg.register_codegen("<func>fast_filt", "fortran",
            f.CallCode("""
                ! mess with state
                ${result} = ${arg}
                """))

    codegen = f.CodeGenerator(
            "MRAB",
            user_type_map={
                "slow": f.ArrayType(
                    (1,),
                    f.BuiltinType('real (kind=8)'),
                    ),
                "fast": f.ArrayType(
                    (1,),
                    f.BuiltinType('real (kind=8)'),
                    )
                },
            function_registry=freg,
            module_preamble="""
            ! lines copied to the start of the module, e.g. to say:
            ! use ModStuff
            """)

    code_str = codegen(code)

    if 0:
        with open("abmethod.f90", "wt") as outf:
            outf.write(code_str)

    fac = 130
    if min_order == 5 and method_name in ["Srs", "Ss"]:
        pytest.xfail("Srs,Ss do not achieve fifth order convergence")

    num_trips_one = 10*fac
    num_trips_two = 30*fac

    run_fortran([
        ("abmethod.f90", code_str),
        ("test_mrab.f90", (
            read_file("test_mrab.f90")
            .replace("MIN_ORDER", str(min_order - 0.3)+"d0")
            .replace("NUM_TRIPS_ONE", str(num_trips_one))
            .replace("NUM_TRIPS_TWO", str(num_trips_two)))),
        ],
        fortran_libraries=["lapack", "blas"])
Пример #3
0
def main():
    # order = 4
    # hist_length = 4
    order = 3
    hist_length = 3
    static_dt = True
    stepper = MultiRateMultiStepMethodBuilder(order, (
        (
            'dt',
            'fast',
            '=',
            MRHistory(1,
                      "<func>f", ("fast", "slow"),
                      hist_length=hist_length,
                      is_rhs_implicit=True),
        ),
        (
            'dt',
            'slow',
            '=',
            MRHistory(1,
                      "<func>s", ("fast", "slow"),
                      rhs_policy=rhs_policy.late,
                      hist_length=hist_length,
                      is_rhs_implicit=False),
        ),
    ),
                                              static_dt=static_dt)

    from dagrt.function_registry import (base_function_registry,
                                         register_function, UserType)

    # This stays unchanged from the existing explicit RK4 RHS.
    freg = register_function(base_function_registry,
                             "<func>s", ("t", "fast", "slow"),
                             result_names=("result", ),
                             result_kinds=(UserType("slow"), ))
    freg = freg.register_codegen(
        "<func>s", "cxx",
        cxx.CallCode("""

                // Purely homogeneous chemistry simulation.
                for (int i = 0;i < 4;i++){

                 ${result}[i] = 0.0;

                }

                """))

    # Here, we need to call a new chemistry RHS that loops through
    # all the points *under the hood.*
    freg = register_function(freg,
                             "<func>f", ("t", "fast", "slow"),
                             result_names=("result", ),
                             result_kinds=(UserType("fast"), ))
    freg = freg.register_codegen(
        "<func>f", "cxx",
        cxx.CallCode("""

                // PyJac inputs.
                double jac[(NS+1)*(NS+1)];
                double jac_trans[(NS+1)*(NS+1)];
                double phi[(NS+1)];
                double phi_guess[(NS+1)];
                double phi_old[(NS+1)];
                double dphi[(NS+1)];
                double dphi_old[(NS+1)];
                double corr[(NS+1)];
                double corr_weights[(NS+1)];
                double corr_weighted[(NS+1)];
                double reltol = 1e-6;
                double abstol = 1e-12;
                /* For Lapack */
                int ipiv[NS+1], info;
                int nrhs = 1;
                int nsp_l = NS+1;
                // Dummy time for pyJac.
                double tout = 0;

                // Work array for PyJac.
                double* rwk_dphi = (double*)malloc(245 * sizeof(double));
                memset(rwk_dphi, 0, 245 * sizeof(double));
                double massFractions[NS];
                double mw[NS];

                // FIXME: Assumes the last (inert) species is nitrogen.
                mw[NS-1] = 2*14.00674;
                for (int i = 0; i < NS-1; ++i ){
                  mw[i] = mw[NS-1]*mw_factor[i];
                }

                double rho = 0.2072648773462248;
                double vol = 1.0 / rho;
                double tol = 1e-10;
                double mass_sum = 0.0;
                for (int i = 2; i <= NS; ++i ){
                  massFractions[i-2] = ${fast}[i]*mw[i-2];
                  mass_sum += massFractions[i-2];
                }
                //massFractions[8] = 1 - mass_sum;
                massFractions[8] = 0.0;

                // PyJac converted input state.
                //phi[0] = ${fast}[0];
                //phi[1] = ${fast}[1];
                // Update temperature and pressure using Cantera?
                Cantera::IdealGasMix * GasMixture;
                GasMixture = new Cantera::IdealGasMix("Mechanisms/sanDiego.xml");
                double int_energy = 788261.179011143;
                GasMixture->setMassFractions(massFractions);
                GasMixture->setState_UV(int_energy, vol, tol);
                phi[0] = GasMixture->temperature();
                phi[1] = GasMixture->pressure();
                delete GasMixture;
                for (int j=2;j <= NS; j++) {
                  phi[j] = massFractions[j-2]/mw[j-2];
                }
                // PyJac call for source term
                species_rates (&tout, &vol, phi, dphi, rwk_dphi);

                for (int j=0;j <= NS; j++) {
                  ${result}[j] = dphi[j];
                }

                """))

    # The tricky part - this is going to require a
    # nonlinear solve of some kind.
    freg = register_function(freg,
                             "<func>solver", ("fast", "slow", "coeff", "t"),
                             result_names=("result", ),
                             result_kinds=(UserType("fast"), ))
    freg = freg.register_codegen(
        "<func>solver", "cxx",
        cxx.CallCode("""

                // PyJac inputs.
                double jac[(NS+1)*(NS+1)];
                double jac_trans[(NS+1)*(NS+1)];
                double jac_sub[(NS-1)*(NS-1)];
                double phi[(NS+1)];
                double phi_guess[(NS+1)];
                double phi_old[(NS+1)];
                double dphi[(NS+1)];
                double dphi_sub[(NS-1)];
                double dphi_old[(NS+1)];
                double corr[(NS+1)];
                double corr_weights[(NS+1)];
                double corr_weighted[(NS+1)];
                double reltol = 1e-6;
                double abstol = 1e-12;
                /* For Lapack */
                int ipiv[NS-1], info;
                int nrhs = 1;
                int nsp_l = NS-1;
                int nsp_l_full = NS+1;
                // Dummy time for pyJac.
                double tout = 0;

                // Work array for PyJac.
                double* rwk_dphi = (double*)malloc(245 * sizeof(double));
                memset(rwk_dphi, 0, 245 * sizeof(double));
                double* rwk_jac = (double*)malloc(245 * sizeof(double));
                memset(rwk_jac, 0, 245 * sizeof(double));

                /* 1D point-sized identity matrix */
                double ident[(NS-1)*(NS-1)];
                for (int i=0; i < (NS-1)*(NS-1); i++) {
                    if (i % (NS) == 0) {
                        ident[i] = 1;
                    } else {
                        ident[i] = 0;
                    }
                }

                // THIS IS WHERE ALL OF THE
                // NEWTON/PYJAC STUFF GOES.
                // Get chemical state at this point.

                double massFractions[NS];
                double mw[NS];

                // FIXME: Assumes the last (inert) species is nitrogen.
                mw[NS-1] = 2*14.00674;
                for (int i = 0; i < NS-1; ++i ){
                  mw[i] = mw[NS-1]*mw_factor[i];
                }

                double rho = 0.2072648773462248;
                double mass_sum = 0.0;
                for (int i = 2; i <= NS; ++i ){
                  massFractions[i-2] = ${fast}[i]*mw[i-2];
                  mass_sum += massFractions[i-2];
                }
                //massFractions[8] = 1 - mass_sum;
                massFractions[8] = 0.0;

                double vol = 1.0 / 0.2072648773462248;
                double tol = 1e-10;

                // PyJac converted input state.
                //phi[0] = ${fast}[0];
                //phi[1] = ${fast}[1];
                Cantera::IdealGasMix * GasMixture;
                GasMixture = new Cantera::IdealGasMix("Mechanisms/sanDiego.xml");
                double int_energy = 788261.179011143;
                GasMixture->setMassFractions(massFractions);
                GasMixture->setState_UV(int_energy, vol, tol);
                phi[0] = GasMixture->temperature();
                phi[1] = GasMixture->pressure();
                //delete GasMixture;
                for (int j=2;j <= NS; j++) {
                  phi[j] = massFractions[j-2]/mw[j-2];
                }
                for (int j=0;j <= NS; j++) {
                  phi_old[j] = phi[j];
                }
                for (int j=0;j <= NS; j++) {
                  phi_guess[j] = phi[j];
                }
                // Newton loop within this point (for now).
                double corr_norm = 1.0;
                // PyJac call for source term
                species_rates (&tout, &vol, phi, dphi_old, rwk_dphi);
                //while (abs(corr_norm) >= reltol) {
                while (abs(corr_norm) >= 1e-8) {
                  species_rates (&tout, &vol, phi_guess, dphi, rwk_dphi);
                  // Get Jacobian at this point.
                  jacobian (&tout, &vol, phi_guess, jac, rwk_jac);
                  for (int j=0;j <= NS; j++) {
                    // IMEX AM
                    dphi[j] = phi_guess[j] - phi_old[j] - ${coeff} * dphi[j];
                  }

                  // Take subset of RHS vector.
                  for (int j=2;j <= NS; j++) {
                    dphi_sub[j-2] = dphi[j];
                  }

                  // Transpose the Jacobian.
                  // PYJAC outputs Fortran-ordering
                  for (int i = 0; i < (NS+1); ++i )
                  {
                    for (int j = 0; j < (NS+1); ++j )
                    {
                      // Index in the original matrix.
                      int index1 = i*(NS+1)+j;

                      // Index in the transpose matrix.
                      int index2 = j*(NS+1)+i;

                      jac_trans[index2] = jac[index1];
                    }
                  }

                  for (int i=0; i<(NS+1)*(NS+1); i++) {
                    jac[i] = jac_trans[i];
                  }

                  // Take subset of Jacobian for algebraic changes.
                  for (int i = 0; i < (NS-1); ++i )
                  {
                    for (int j = 0; j < (NS-1); ++j )
                    {
                      jac_sub[i*(NS-1)+j] = jac[(i+2)*(NS+1)+2+j];
                    }
                  }

                  // Make the algebraic changes,
                  // using PyJac routines as needed.
                  // Get internal energies.
                  double int_energies[NS];
                  eval_u(phi_guess, int_energies);
                  // Get CVs.
                  double cvs[NS];
                  eval_cv(phi_guess, cvs);
                  // Get total CV.
                  double mass_sum = 0.0;
                  for (int i = 2; i <= NS; ++i ){
                    massFractions[i-2] = phi_guess[i]*mw[i-2];
                    mass_sum += massFractions[i-2];
                  }
                  //massFractions[8] = 1 - mass_sum;
                  massFractions[8] = 0.0;
                  double cv_total = 0.0;
                  for (int i = 0; i <= NS-1; ++i ){
                    cv_total += cvs[i]*(massFractions[i]/mw[i]);
                  }

                  // Modify the Jacobian for the algebraic constraint.
                  for (int i = 0; i < (NS-1); ++i )
                  {
                    for (int j = 0; j < (NS-1); ++j )
                    {
                      jac_sub[i*(NS-1)+j] -= jac[j+2]*int_energies[i]/cv_total;
                    }
                  }
                  /* Subtract from identity to get jac for Newton */
                  for (int j=0;j < (NS-1)*(NS-1); j++) {
                    jac_sub[j] = ident[j] - ${coeff} * jac_sub[j]; // IMEX AM
                    jac_sub[j] = -jac_sub[j];
                  }
                  // Do the inversion with the assistance of Lapack.
                  dgesv_(&nsp_l, &nrhs, jac_sub, &nsp_l, ipiv, dphi_sub, &nsp_l, &info);
                  // Add the correction to the buffer.
                  mass_sum = 0.0;
                  for (int i = 2; i <= NS; ++i ){
                    massFractions[i-2] = (phi_guess[i] + dphi_sub[i-2])*mw[i-2];
                    mass_sum += massFractions[i-2];
                  }
                  //massFractions[8] = 1 - mass_sum;
                  massFractions[8] = 0.0;
                  GasMixture->setMassFractions(massFractions);
                  GasMixture->setState_UV(int_energy, vol, tol);
                  corr[0] = GasMixture->temperature() - phi_guess[0];
                  corr[1] = GasMixture->pressure() - phi_guess[1];
                  for (int j=2;j <= NS; j++) {
                    corr[j] = dphi_sub[j-2];
                  }
                  for (int j=0;j <= NS; j++) {
                    corr_weights[j] = 1.0 / (reltol * abs(phi_guess[j]) + abstol);
                    corr_weighted[j] = corr[j]*corr_weights[j];
                  }

                  //corr_norm = dnrm2_(&nsp_l, corr, &nrhs);
                  corr_norm = dnrm2_(&nsp_l_full, corr_weighted, &nrhs);
                  //std::cout << "Correction norm: " << corr_norm << std::endl;
                  for (int j=0;j <= NS; j++) {
                    phi_guess[j] = phi_guess[j] + corr[j];
                  }
                }
                // Now outside the Newton loop (presumably having converged),
                // we update the RHS using the actual state.
                species_rates (&tout, &vol, phi_guess, dphi, rwk_dphi);
                for (int j=0;j <= NS; j++) {
                  ${result}[j] = dphi[j];
                }
                delete GasMixture;

                """))

    code = stepper.generate()

    # Implicit solve thingy
    from leap.implicit import replace_AssignImplicit
    code = replace_AssignImplicit(code, {"solve": am_solver_hook})

    # print(code)
    codegen = cxx.CodeGenerator(
        'LeapIMEX',
        user_type_map={
            "fast": cxx.ArrayType(
                (10, ),
                cxx.BuiltinType('double'),
            ),
            "slow": cxx.ArrayType(
                (4, ),
                cxx.BuiltinType('double'),
            ),
        },
        function_registry=freg,
        emit_instrumentation=True,
        timing_function="clock",
        header_preamble="\n#include \"mechanism.hpp\"\n#include " +
        "\"species_rates.hpp\"\n#include " +
        "\"jacobian.hpp\"\n#include \"memcpy_2d.hpp" +
        "\"\n#include \"lapack_kernels.H\"\n#include " +
        "\"cantera/IdealGasMix.h\"\n#include " +
        "\"cantera/thermo.h\"\n#include " +
        "\"cantera/kinetics.h\"\n#include " + "\"cantera/transport.h\"")

    import sys

    # Write out Leap/Dagrt code:
    with open(sys.argv[1], "a") as outf:
        code_str = codegen(code)
        print(code_str, file=outf)