def __init__(self, in_ch, n_outputs, p=0.05): super(RecurrentNet, self).__init__() self.dean = DAIN_Layer(input_dim = in_ch-1, mode='adaptive_scale', mean_lr=0.0001, gate_lr=0.01, scale_lr=0.001) self.rnn1 = nn.LSTM(in_ch, 128, num_layers=2, bidirectional=True, batch_first=True) self.dropout = nn.Dropout(p=p) self.dropout2 = nn.Dropout(p=p*2) self.linear = nn.Linear(128*2 + 2048, n_outputs)
def __init__(self, mode='adaptive_avg', mean_lr=0.00001, gate_lr=0.001, scale_lr=0.0001): super(MLP, self).__init__() self.base = nn.Sequential( nn.Linear(15 * 144, 512), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(512, 3) ) self.dean = DAIN_Layer(mode=mode, mean_lr=mean_lr, gate_lr=gate_lr, scale_lr=scale_lr)
def __init__(self, in_ch, n_outputs, p=0.05): super(MLP, self).__init__() self.dean = DAIN_Layer(input_dim=1, mode='adaptive_avg', mean_lr=0.0001, gate_lr=0.01, scale_lr=0.001) self.dropout = nn.Dropout(p) self.dropout2 = nn.Dropout(p * 2) self.linear = nn.Linear(time_steps - 1 + 1 + 2048, n_outputs)
def __init__(self, in_ch, n_outputs, p=0.05): super(MLP, self).__init__() self.dean = DAIN_Layer(input_dim=in_ch - 1, mode='adaptive_scale', mean_lr=0.0001, gate_lr=0.01, scale_lr=0.001) self.fc1 = FC((in_ch - 1) * (time_steps - 1) + 1, 64) self.fc2 = FC(64, 128) self.fc3 = FC(128, 256) self.dropout = nn.Dropout(p=p) self.dropout2 = nn.Dropout(p=p * 2) self.linear = nn.Linear(256 + 2048, n_outputs)
def __init__(self, in_ch, n_outputs, p=0.05): super(TNet, self).__init__() self.dean = DAIN_Layer(input_dim=in_ch - 1, mode='adaptive_scale', mean_lr=0.0001, gate_lr=0.01, scale_lr=0.001) self.conv = nn.Sequential(nn.Conv1d(in_ch, 64, 5, 1, 2), nn.ReLU()) self.encoder_layer = nn.TransformerEncoderLayer(64, 8) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, 1) self.avg_pool = nn.AdaptiveMaxPool1d(1) self.dropout = nn.Dropout(p=p) self.dropout2 = nn.Dropout(p=p * 2) self.linear = nn.Linear(64 + 2048, n_outputs)
def __init__(self, in_ch, kernel, n_outputs, p=0.05): super(ConvNet, self).__init__() self.dean = DAIN_Layer(input_dim=in_ch - 1, mode='adaptive_scale', mean_lr=0.0001, gate_lr=0.01, scale_lr=0.001) pad = kernel // 2 self.conv1 = Conv(in_ch, 64, kernel, pad) self.conv2 = Conv(64, 128, kernel, pad) self.conv3 = Conv(128, 256, kernel, pad) self.conv4 = Conv(256, 256, kernel, pad) self.avg_pool = nn.AdaptiveAvgPool1d(1) self.max_pool = nn.AdaptiveMaxPool1d(1) self.dropout = nn.Dropout(p=p) self.dropout2 = nn.Dropout(p=p * 2) self.fc1 = FC(256, 64) self.linear = nn.Linear(256 + 2048, n_outputs)