load_weights_from_file_q = input('Load weights from file? (y/n)') more_train_q = input('Train more? (y/n)') time_str = time.strftime("%Y_%m_%d-%H_%M_%S") result_output_name = "../output/predictions/{}_output.csv".format(method_name) with open(result_output_name, 'w') as file: writer = csv.writer(file) writer.writerow([ 'Method Name', '# Total Folds', '# Fold Number', '# Predictions', '# Truth', 'Computation Time (ms)', 'Prediction Indices', 'True Indices' ]) for fold_counter in range(1, k_fold + 1): x_train, y_train, x_test, y_test = dblp.get_fold_data( fold_counter, dataset, train_test_indices) input_dim = x_train[0][0].shape[1] output_dim = y_train[0][0].shape[1] print("Input/output Dimensions: ", input_dim, output_dim) # this is our input placeholder # network parameters intermediate_dim_encoder = input_dim intermediate_dim_decoder = output_dim # VAE model = encoder + decoder # build encoder model inputs = Input(shape=(input_dim, ), name='encoder_input') x = Dense(intermediate_dim_encoder, activation='relu')(inputs) z_mean = Dense(latent_dim, name='z_mean')(x)
lambda_val = 0.001 # Weight decay , refer : https://stackoverflow.com/questions/44495698/keras-difference-between-kernel-and-activity-regularizers load_weights_from_file_q = input('Load weights from file? (y/n)') more_train_q = input('Train more? (y/n)') time_str = time.strftime("%Y_%m_%d-%H_%M_%S") result_output_name = "../output/predictions/{}_output.csv".format(method_name) with open(result_output_name, 'w') as file: writer = csv.writer(file) writer.writerow( ['Method Name', '# Total Folds', '# Fold Number', '# Predictions', '# Truth', 'Computation Time (ms)', 'Prediction Indices', 'True Indices']) for fold_counter in range(1,k_fold+1): x_train_onehot, y_train_onehot, x_test_onehot, y_test_onehot = dblp.get_fold_data(fold_counter, dataset_onehot, train_test_indices) x_train_t2v, y_train_t2v, x_test_t2v, y_test_t2v = dblp.get_fold_data(fold_counter, dataset_t2v, train_test_indices) input_dim_onehot = x_train_onehot[0][0].shape[1] input_dim_t2v = x_train_t2v.shape[1] output_dim = y_train_onehot[0][0].shape[1] print("Input/output Dimensions: ", input_dim_onehot+input_dim_t2v, output_dim) # this is our input placeholder # network parameters intermediate_dim_encoder_onehot = input_dim_onehot intermediate_dim_encoder_t2v = input_dim_t2v intermediate_dim_decoder = output_dim # VAE model = encoder + decoder # build encoder model