def validate(val_loader: DataLoader, model: ImageClassifier, args: argparse.Namespace) -> float: batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(val_loader), [batch_time, losses, top1, top5], prefix='Test: ') # switch to evaluate mode model.eval() if args.per_class_eval: classes = val_loader.dataset.classes confmat = ConfusionMatrix(len(classes)) else: confmat = None with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): images = images.to(device) target = target.to(device) # compute output output, _ = model(images) loss = F.cross_entropy(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) if confmat: confmat.update(target, output.argmax(1)) losses.update(loss.item(), images.size(0)) top1.update(acc1.item(), images.size(0)) top5.update(acc5.item(), images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) if confmat: print(confmat.format(classes)) return top1.avg
def main(args: argparse.Namespace): logger = CompleteLogger(args.log, args.phase) print(args) if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') cudnn.benchmark = True # Data loading code train_transform = utils.get_train_transform( args.train_resizing, random_horizontal_flip=not args.no_hflip, random_color_jitter=False, resize_size=args.resize_size, norm_mean=args.norm_mean, norm_std=args.norm_std) val_transform = utils.get_val_transform(args.val_resizing, resize_size=args.resize_size, norm_mean=args.norm_mean, norm_std=args.norm_std) print("train_transform: ", train_transform) print("val_transform: ", val_transform) train_source_dataset, train_target_dataset, val_dataset, test_dataset, num_classes, args.class_names = \ utils.get_dataset(args.data, args.root, args.source, args.target, train_transform, val_transform) train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) train_source_iter = ForeverDataIterator(train_source_loader) train_target_iter = ForeverDataIterator(train_target_loader) # create model print("=> using model '{}'".format(args.arch)) backbone = utils.get_model(args.arch, pretrain=not args.scratch) pool_layer = nn.Identity() if args.no_pool else None classifier = ImageClassifier(backbone, num_classes, bottleneck_dim=args.bottleneck_dim, width=args.bottleneck_dim, pool_layer=pool_layer).to(device) mdd = MarginDisparityDiscrepancy(args.margin).to(device) # define optimizer and lr_scheduler # The learning rate of the classifiers are set 10 times to that of the feature extractor by default. optimizer = SGD(classifier.get_parameters(), args.lr, momentum=args.momentum, weight_decay=args.wd, nesterov=True) lr_scheduler = LambdaLR( optimizer, lambda x: args.lr * (1. + args.lr_gamma * float(x))**(-args.lr_decay)) # resume from the best checkpoint if args.phase != 'train': checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu') classifier.load_state_dict(checkpoint) # analysis the model if args.phase == 'analysis': # extract features from both domains feature_extractor = nn.Sequential(classifier.backbone, classifier.bottleneck).to(device) source_feature = collect_feature(train_source_loader, feature_extractor, device) target_feature = collect_feature(train_target_loader, feature_extractor, device) # plot t-SNE tSNE_filename = osp.join(logger.visualize_directory, 'TSNE.pdf') tsne.visualize(source_feature, target_feature, tSNE_filename) print("Saving t-SNE to", tSNE_filename) # calculate A-distance, which is a measure for distribution discrepancy A_distance = a_distance.calculate(source_feature, target_feature, device) print("A-distance =", A_distance) return if args.phase == 'test': acc1 = utils.validate(test_loader, classifier, args, device) print(acc1) return # start training best_acc1 = 0. for epoch in range(args.epochs): print(lr_scheduler.get_lr()) # train for one epoch train(train_source_iter, train_target_iter, classifier, mdd, optimizer, lr_scheduler, epoch, args) # evaluate on validation set acc1 = utils.validate(val_loader, classifier, args, device) # remember best acc@1 and save checkpoint torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest')) if acc1 > best_acc1: shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best')) best_acc1 = max(acc1, best_acc1) print("best_acc1 = {:3.1f}".format(best_acc1)) # evaluate on test set classifier.load_state_dict(torch.load(logger.get_checkpoint_path('best'))) acc1 = utils.validate(test_loader, classifier, args, device) print("test_acc1 = {:3.1f}".format(acc1)) logger.close()
def train(train_source_iter: ForeverDataIterator, train_target_iter: ForeverDataIterator, classifier: ImageClassifier, mdd: MarginDisparityDiscrepancy, optimizer: SGD, lr_scheduler: LambdaLR, epoch: int, args: argparse.Namespace): batch_time = AverageMeter('Time', ':3.1f') data_time = AverageMeter('Data', ':3.1f') losses = AverageMeter('Loss', ':3.2f') trans_losses = AverageMeter('Trans Loss', ':3.2f') cls_accs = AverageMeter('Cls Acc', ':3.1f') tgt_accs = AverageMeter('Tgt Acc', ':3.1f') progress = ProgressMeter( args.iters_per_epoch, [batch_time, data_time, losses, trans_losses, cls_accs, tgt_accs], prefix="Epoch: [{}]".format(epoch)) # switch to train mode classifier.train() mdd.train() end = time.time() for i in range(args.iters_per_epoch): optimizer.zero_grad() x_s, labels_s = next(train_source_iter) x_t, labels_t = next(train_target_iter) x_s = x_s.to(device) x_t = x_t.to(device) labels_s = labels_s.to(device) labels_t = labels_t.to(device) # measure data loading time data_time.update(time.time() - end) # compute output x = torch.cat((x_s, x_t), dim=0) outputs, outputs_adv = classifier(x) y_s, y_t = outputs.chunk(2, dim=0) y_s_adv, y_t_adv = outputs_adv.chunk(2, dim=0) # compute cross entropy loss on source domain cls_loss = F.cross_entropy(y_s, labels_s) # compute margin disparity discrepancy between domains # for adversarial classifier, minimize negative mdd is equal to maximize mdd transfer_loss = -mdd(y_s, y_s_adv, y_t, y_t_adv) loss = cls_loss + transfer_loss * args.trade_off classifier.step() cls_acc = accuracy(y_s, labels_s)[0] tgt_acc = accuracy(y_t, labels_t)[0] losses.update(loss.item(), x_s.size(0)) cls_accs.update(cls_acc.item(), x_s.size(0)) tgt_accs.update(tgt_acc.item(), x_t.size(0)) trans_losses.update(transfer_loss.item(), x_s.size(0)) # compute gradient and do SGD step loss.backward() optimizer.step() lr_scheduler.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i)
def main(args: argparse.Namespace): if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') cudnn.benchmark = True # Data loading code normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if args.center_crop: train_transform = transforms.Compose([ ResizeImage(256), transforms.CenterCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) else: train_transform = transforms.Compose([ ResizeImage(256), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) val_transform = transforms.Compose([ ResizeImage(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize ]) dataset = datasets.__dict__[args.data] train_source_dataset = dataset(root=args.root, task=args.source, download=True, transform=train_transform) train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) train_target_dataset = dataset(root=args.root, task=args.target, download=True, transform=train_transform) train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) val_dataset = dataset(root=args.root, task=args.target, download=True, transform=val_transform) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) if args.data == 'DomainNet': test_dataset = dataset(root=args.root, task=args.target, evaluate=True, download=True, transform=val_transform) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) else: test_loader = val_loader train_source_iter = ForeverDataIterator(train_source_loader) train_target_iter = ForeverDataIterator(train_target_loader) # create model print("=> using pre-trained model '{}'".format(args.arch)) backbone = models.__dict__[args.arch](pretrained=True).to(device) num_classes = train_source_dataset.num_classes classifier = ImageClassifier(backbone, num_classes, bottleneck_dim=args.bottleneck_dim, width=args.bottleneck_dim).to(device) mdd = MarginDisparityDiscrepancy(args.margin).to(device) # define optimizer and lr_scheduler # The learning rate of the classifiers are set 10 times to that of the feature extractor by default. optimizer = SGD(classifier.get_parameters(), args.lr, momentum=args.momentum, weight_decay=args.wd, nesterov=True) lr_scheduler = StepwiseLR(optimizer, init_lr=args.lr, gamma=args.lr_gamma, decay_rate=0.75) # start training best_acc1 = 0. best_model = classifier.state_dict() for epoch in range(args.epochs): # train for one epoch train(train_source_iter, train_target_iter, classifier, mdd, optimizer, lr_scheduler, epoch, args) # evaluate on validation set acc1 = validate(val_loader, classifier, args) # remember best acc@1 and save checkpoint if acc1 > best_acc1: best_model = copy.deepcopy(classifier.state_dict()) best_acc1 = max(acc1, best_acc1) print("best_acc1 = {:3.1f}".format(best_acc1)) # evaluate on test set classifier.load_state_dict(best_model) acc1 = validate(test_loader, classifier, args) print("test_acc1 = {:3.1f}".format(acc1))
def main(args: argparse.Namespace): logger = CompleteLogger(args.log, args.phase) if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') cudnn.benchmark = True # Data loading code normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if args.center_crop: train_transform = T.Compose([ ResizeImage(256), T.CenterCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), normalize ]) else: train_transform = T.Compose([ ResizeImage(256), T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.ToTensor(), normalize ]) val_transform = T.Compose( [ResizeImage(256), T.CenterCrop(224), T.ToTensor(), normalize]) dataset = datasets.__dict__[args.data] # If sources is not set, # then use all domains except the target domain. if args.sources is None: args.sources = dataset.domains() args.sources.remove(args.target) print("Source: {} Target: {}".format(args.sources, args.target)) train_source_dataset = ConcatDataset([ dataset(root=args.root, task=source, download=True, transform=train_transform) for source in args.sources ]) train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) train_target_dataset = dataset(root=args.root, task=args.target, download=True, transform=train_transform) train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True) val_dataset = dataset(root=args.root, task=args.target, download=True, transform=val_transform) val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) if args.data == 'DomainNet': test_dataset = dataset(root=args.root, task=args.target, split='test', download=True, transform=val_transform) test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) else: test_loader = val_loader train_source_iter = ForeverDataIterator(train_source_loader) train_target_iter = ForeverDataIterator(train_target_loader) # create model print("=> using pre-trained model '{}'".format(args.arch)) backbone = models.__dict__[args.arch](pretrained=True).to(device) num_classes = val_dataset.num_classes classifier = ImageClassifier(backbone, num_classes, bottleneck_dim=args.bottleneck_dim, width=args.bottleneck_dim).to(device) mdd = MarginDisparityDiscrepancy(args.margin).to(device) # define optimizer and lr_scheduler # The learning rate of the classifiers are set 10 times to that of the feature extractor by default. optimizer = SGD(classifier.get_parameters(), args.lr, momentum=args.momentum, weight_decay=args.wd, nesterov=True) lr_scheduler = LambdaLR( optimizer, lambda x: args.lr * (1. + args.lr_gamma * float(x))**(-args.lr_decay)) if args.phase == 'test': # resume from the best checkpoint checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu') classifier.load_state_dict(checkpoint) acc1 = validate(test_loader, classifier, args) print(acc1) return # start training best_acc1 = 0. for epoch in range(args.epochs): # train for one epoch train(train_source_iter, train_target_iter, classifier, mdd, optimizer, lr_scheduler, epoch, args) # evaluate on validation set acc1 = validate(val_loader, classifier, args) # remember best acc@1 and save checkpoint torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest')) if acc1 > best_acc1: shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best')) best_acc1 = max(acc1, best_acc1) print("best_acc1 = {:3.1f}".format(best_acc1)) # evaluate on test set classifier.load_state_dict(torch.load(logger.get_checkpoint_path('best'))) acc1 = validate(test_loader, classifier, args) print("test_acc1 = {:3.1f}".format(acc1)) logger.close()