Пример #1
0
def QuantileEdges(sample, n=10):
    """
    Return binning edges each containing the same quantile of the sample
    """
    qs = np.linspace(0, 1, n + 1)
    edges = np.quantile(sample, qs)
    return dm.Edges(edges)
Пример #2
0
 def __getitem__(self, idx):
     if idx is Ellipsis:
         return self
     new_edges = self._edges[idx]
     if np.isscalar(new_edges):
         return new_edges
     return dm.Edges(new_edges)
Пример #3
0
def test():
    a = Grid(var='a', edges=np.linspace(0, 1, 2))
    print(a)
    print(a.vars)
    a.x = dm.Edges(np.linspace(0, 10, 11))
    a.y = np.logspace(-1, 1, 20)
    print(a['x'].points)
    print(a['x'].edges)
    print(a['x', 'y'])
Пример #4
0
 def edges(self, edges):
     edges = dm.Edges(edges)
     if self.initialized:
         if not len(edges) == len(self):
             raise IndexError('incompatible length of edges')
     self._edges = edges
Пример #5
0
 def edges(self):
     if self.has_edges:
         return self._edges
     if self.has_points:
         return dm.Edges(points=self._points, log=self.log)
     return None
Пример #6
0
def BayesianEdges(sample):
    """Bayesian Blocks Implementation

    By Jake Vanderplas.  License: BSD
    Based on algorithm outlined in http://adsabs.harvard.edu/abs/2012arXiv1207.5578S

    Edit: Small bugfix (P. Eller)

    Parameters
    ----------
    sample : ndarray, length N
        data to be histogrammed
        
    weights : ndarray, length N (optional)
        weights of data

    Returns
    -------
    bins : ndarray
        array containing the (N+1) bin edges

    Notes
    -----
    This is an incomplete implementation: it may fail for some
    datasets.  Alternate fitness functions and prior forms can
    be found in the paper listed above.
    """
    # copy and sort the array
    sample = np.sort(sample)
    N = sample.size

    # create length-(N + 1) array of cell edges
    edges = np.concatenate(
        [sample[:1], 0.5 * (sample[1:] + sample[:-1]), sample[-1:]])
    block_length = sample[-1] - edges

    #print(np.diff(edges))
    #print(block_length)

    # arrays needed for the iteration
    nn_vec = np.ones(N)
    best = np.zeros(N, dtype=float)
    last = np.zeros(N, dtype=int)

    #-----------------------------------------------------------------
    # Start with first data cell; add one cell at each iteration
    #-----------------------------------------------------------------
    for K in range(N):
        # Compute the width and count of the final bin for all possible
        # locations of the K^th changepoint
        width = block_length[:K + 1] - block_length[K + 1]
        count_vec = np.cumsum(nn_vec[:K + 1][::-1])[::-1]
        # evaluate fitness function for these possibilities

        fit_vec = count_vec * (np.log(count_vec) - np.log(width))
        fit_vec -= 4  # 4 comes from the prior on the number of changepoints
        fit_vec[1:] += best[:K]

        # find the max of the fitness: this is the K^th changepoint
        i_max = np.argmax(fit_vec)
        last[K] = i_max
        best[K] = fit_vec[i_max]

    #-----------------------------------------------------------------
    # Recover changepoints by iteratively peeling off the last block
    #-----------------------------------------------------------------
    change_points = np.zeros(N + 1, dtype=int)
    i_cp = N + 1
    ind = N
    while True:
        i_cp -= 1
        change_points[i_cp] = ind
        if ind == 0:
            break
        ind = last[ind - 1]

    change_points = change_points[i_cp:]

    return dm.Edges(edges[change_points])