from tqdm import tqdm from delfi.distribution import Uniform from dap.utils import obs_params_gbar, syn_current from dap.dap_sumstats_moments import DAPSummaryStatsMoments from dap import DAPcython from dap.dap_simulator import DAPSimulator # General Settings Pick n_samples = 100 n_summary = 13 dt = 0.01 percent_accept = 1 # Get current I, t, t_on, t_off = syn_current(duration=70, dt=dt, t_on=15, t_off=20, amp=3.1) params, labels = obs_params_gbar(reduced_model=True) dap = DAPcython(-75, params * 10) # Set up the model sim = DAPSimulator(I, dt, -75, dim_param=2) stats = DAPSummaryStatsMoments(t_on, t_off, n_summary=n_summary) # Setup Priors prior_min = np.array([0, 0]) prior_max = np.array([2, 2]) prior_unif = Uniform(lower=prior_min, upper=prior_max) # generate desired data U = dap.simulate(dt, t, I) y_o = {'data': U.reshape(-1), 'time': t, 'dt': dt, 'I': I}
import matplotlib.pyplot as plt from dap.dap_simulator import DAPSimulator from dap.utils import obs_params_gbar, syn_current params, labels = obs_params_gbar() I, t, t_on, t_off = syn_current(duration=150, dt=0.01) # define model dap1 = DAPSimulator(I, 0.01, -75) # run model stats = dap1.gen_single(params) # plot voltage trace fig, ax = plt.subplots(ncols=1, nrows=2, figsize=(20, 10)) ax[0].grid() ax[0].set_ylabel('V (mV)') ax[0].set_xlabel('t (ms)') ax[0].plot(stats['time'], stats['data'], label='DAP') ax[0].legend() ax[1].plot(t, I) plt.show()
import matplotlib.pyplot as plt from dap import DAP, DAPBe from dap import DAPcython from dap.utils import obs_params, obs_params_gbar, syn_current dt = 1e-2 params, labels = obs_params(reduced_model=True) params, labels = obs_params_gbar(reduced_model=False) I, t, t_on, t_off = syn_current(duration=120, dt=dt) print(params) # define models / check setters dap = DAP(-75, params) dap_back = DAPBe(-75, params) dap_cython = DAPcython(-75, params, solver=1) dap_cython_back = DAPcython(-75, params, solver=2) # run models U = dap.simulate(dt, t, I) U_cython = dap_cython.simulate(dt, t, I) U_back = dap_back.simulate(dt, t, I) U_cython_back = dap_cython_back.simulate(dt, t, I) # plot fig, ax = plt.subplots(5, 1, figsize=(20, 10)); ax[0].plot(t, U, label='forward') ax[1].plot(t, U_cython) ax[2].plot(t, U_back, label='backward')
n_params = 4 n_summary = 17 n_samples = 10 n_hiddens = [30] n_components = 1 dt = 0.01 reg_lambda = 0.01 # Load the current # data_dir = '/home/alteska/Desktop/LFI_DAP/data/rawData/2015_08_26b.dat' # best cell # protocol = 'rampIV' # 'IV' # 'rampIV' # 'Zap20' # ramp_amp = 3.1 # I, v, t, t_on, t_off, dt = load_current(data_dir, protocol=protocol, ramp_amp=ramp_amp) I, t, t_on, t_off = syn_current(duration=50, dt=0.01, t_on=15, t_off=20, amp=3.1) # Set up themodel params, labels = obs_params(reduced_model=True) dap = DAPcython(-75, params) U = dap.simulate(dt, t, I) # generate data format for SNPE / OBSERVABLE x_o = {'data': U.reshape(-1), 'time': t, 'dt': dt, 'I': I} # Setup Priors prior_min, prior_max, labels = load_prior_ranges(n_params) prior_unif = Uniform(lower=prior_min, upper=prior_max)