Пример #1
0
                def local_analysis(ii):
                    """Do the local analysis.

                    Notation:

                    - ii: inds for the state batch defining the locality
                    - jj: inds for the associated obs
                    """
                    # Locate local obs
                    jj, tapering = obs_taperer(ii)
                    if len(jj) == 0:
                        return E[:, ii], N1  # no update
                    Y_jj = Y[:, jj]
                    dy_jj = dy[jj]

                    # Adaptive inflation
                    za = effective_N(Y_jj, dy_jj, xN,
                                     g) if infl == '-N' else N1

                    # Taper
                    Y_jj *= sqrt(tapering)
                    dy_jj *= sqrt(tapering)

                    # Compute ETKF update
                    if len(jj) < N:
                        # SVD version
                        V, sd, _ = svd0(Y_jj)
                        d = pad0(sd**2, N) + za
                        Pw = (V * d**(-1.0)) @ V.T
                        T = (V * d**(-0.5)) @ V.T * sqrt(za)
                    else:
                        # EVD version
                        d, V = sla.eigh(Y_jj @ Y_jj.T + za * eye(N))
                        T = V @ diag(d**(-0.5)) @ V.T * sqrt(za)
                        Pw = V @ diag(d**(-1.0)) @ V.T
                    AT = T @ A[:, ii]
                    dmu = dy_jj @ Y_jj.T @ Pw @ A[:, ii]
                    Eii = mu[ii] + dmu + AT
                    return Eii, za
Пример #2
0
    def assimilate(self, HMM, xx, yy):
        Dyn, Obs, chrono, X0, stats = HMM.Dyn, HMM.Obs, HMM.t, HMM.X0, self.stats
        R, KObs = HMM.Obs.noise.C, HMM.t.KObs
        Rm12 = R.sym_sqrt_inv
        Nx = Dyn.M

        # Set background covariance. Note that it is static (compare to iEnKS).
        if self.B in (None, 'clim'):
            # Use climatological cov, ...
            B = np.cov(xx.T)  # ... estimated from truth
        elif self.B == 'eye':
            B = np.eye(Nx)
        else:
            B = self.B
        B *= self.xB
        B12 = CovMat(B).sym_sqrt

        # Init
        x = X0.mu
        stats.assess(0, mu=x, Cov=B)

        # Loop over DA windows (DAW).
        for kObs in progbar(np.arange(-1, KObs + self.Lag + 1)):
            kLag = kObs - self.Lag
            DAW = range(max(0, kLag + 1), min(kObs, KObs) + 1)

            # Assimilation (if ∃ "not-fully-assimlated" obs).
            if 0 <= kObs <= KObs:

                # Init iterations.
                w = np.zeros(Nx)  # Control vector for the mean state.
                x0 = x.copy()  # Increment reference.

                for iteration in np.arange(self.nIter):
                    # Reconstruct smoothed state.
                    x = x0 + B12 @ w
                    X = B12  # Aggregate composite TLMs onto B12
                    # Forecast.
                    for kCycle in DAW:
                        for k, t, dt in chrono.cycle(kCycle):  # noqa
                            X = Dyn.linear(x, t - dt, dt) @ X
                            x = Dyn(x, t - dt, dt)

                    # Assess forecast stats
                    if iteration == 0:
                        stats.assess(k, kObs, 'f', mu=x, Cov=X @ X.T)

                    # Observe.
                    Y = Obs.linear(x, t) @ X
                    xo = Obs(x, t)

                    # Analysis prep.
                    y = yy[kObs]  # Get current obs.
                    dy = Rm12 @ (y - xo)  # Transform obs space.
                    Y = Rm12 @ Y  # Transform obs space.
                    V, s, UT = svd0(Y.T)  # Decomp for lin-alg update comps.

                    # Post. cov (approx) of w,
                    # estimated at current iteration, raised to power.
                    Cow1 = (V * (pad0(s**2, Nx) + 1)**-1.0) @ V.T

                    # Compute analysis update.
                    grad = Y.T @ dy - w  # Cost function gradient
                    dw = Cow1 @ grad  # Gauss-Newton step
                    w += dw  # Step

                    if dw @ dw < self.wtol * Nx:
                        break

                # Assess (analysis) stats.
                final_increment = X @ dw
                stats.assess(k,
                             kObs,
                             'a',
                             mu=x + final_increment,
                             Cov=X @ Cow1 @ X.T)
                stats.iters[kObs] = iteration + 1

                # Final (smoothed) estimate at [kLag].
                x = x0 + B12 @ w
                X = B12

            # Slide/shift DAW by propagating smoothed ('s') state from [kLag].
            if -1 <= kLag < KObs:
                if kLag >= 0:
                    stats.assess(chrono.kkObs[kLag],
                                 kLag,
                                 's',
                                 mu=x,
                                 Cov=X @ Cow1 @ X.T)
                for k, t, dt in chrono.cycle(kLag + 1):
                    stats.assess(k - 1, None, 'u', mu=x, Cov=Y @ Y.T)
                    X = Dyn.linear(x, t - dt, dt) @ X
                    x = Dyn(x, t - dt, dt)

        stats.assess(k, KObs, 'us', mu=x, Cov=X @ Cow1 @ X.T)
Пример #3
0
 def Cowp(expo):
     return (V * (pad0(s**2, N) + za)**-expo) @ V.T
Пример #4
0
 def nvrs(w):
     # inverse of Jpp-approx
     return (V * (pad0(s**2, N) + za(w)) ** -1.0) @ V.T
Пример #5
0
 def pad_rk(arr): return pad0(arr, min(N, Obs.M))
 def dgn_rk(l1): return pad_rk((l1*s)**2) + N1
Пример #6
0
                def dgn_N(l1): return pad0((l1*s)**2, N) + N1

                # Adjust hyper-prior
                # xN_ = noise_level(self.xN,stats,chrono,N1,kObs,A,
                #                   locals().get('A_old',None))
                eN, cL = hyperprior_coeffs(s, N, self.xN, self.g)
Пример #7
0
def hyperprior_coeffs(s, N, xN=1, g=0):
    r"""Set EnKF-N inflation hyperparams.

    The EnKF-N prior may be specified by the constants:

    - eN: Effect of unknown mean
    - cL: Coeff in front of log term

    These are trivial constants in the original EnKF-N,
    but are further adjusted (corrected and tuned) for the following reasons.

    - Reason 1: mode correction.
      These parameters bridge the Jeffreys (`xN=1`) and Dirac (`xN=Inf`) hyperpriors
      for the prior covariance, B, as discussed in `bib.bocquet2015expanding`.
      Indeed, mode correction becomes necessary when $$ R \rightarrow \infty $$
      because then there should be no ensemble update (and also no inflation!).
      More specifically, the mode of `l1`'s should be adjusted towards 1
      as a function of $$ I - K H $$ ("prior's weight").
      PS: why do we leave the prior mode below 1 at all?
      Because it sets up "tension" (negative feedback) in the inflation cycle:
      the prior pulls downwards, while the likelihood tends to pull upwards.

    - Reason 2: Boosting the inflation prior's certainty from N to xN*N.
      The aim is to take advantage of the fact that the ensemble may not
      have quite as much sampling error as a fully stochastic sample,
      as illustrated in section 2.1 of `bib.raanes2019adaptive`.

    - Its damping effect is similar to work done by J. Anderson.

    The tuning is controlled by:

    - `xN=1`: is fully agnostic, i.e. assumes the ensemble is generated
      from a highly chaotic or stochastic model.
    - `xN>1`: increases the certainty of the hyper-prior,
      which is appropriate for more linear and deterministic systems.
    - `xN<1`: yields a more (than 'fully') agnostic hyper-prior,
      as if N were smaller than it truly is.
    - `xN<=0` is not meaningful.
    """
    N1 = N-1

    eN = (N+1)/N
    cL = (N+g)/N1

    # Mode correction (almost) as in eqn 36 of `bib.bocquet2015expanding`
    prior_mode = eN/cL                        # Mode of l1 (before correction)
    diagonal   = pad0(s**2, N) + N1           # diag of [email protected]@Y + N1*I
    #                                           (Hessian of J)
    I_KH       = np.mean(diagonal**(-1))*N1   # ≈ 1/(1 + HBH/R)
    # I_KH      = 1/(1 + (s**2).sum()/N1)     # Scalar alternative: use tr(HBH/R).
    mc         = sqrt(prior_mode**I_KH)       # Correction coeff

    # Apply correction
    eN /= mc
    cL *= mc

    # Boost by xN
    eN *= xN
    cL *= xN

    return eN, cL
Пример #8
0
def EnKF_analysis(E, Eo, hnoise, y, upd_a, stats, kObs):
    """Perform the EnKF analysis update.

    This implementation includes several flavours and forms,
    specified by `upd_a`.

    Main references: `bib.sakov2008deterministic`,
    `bib.sakov2008implications`, `bib.hoteit2015mitigating`
    """
    R     = hnoise.C     # Obs noise cov
    N, Nx = E.shape      # Dimensionality
    N1    = N-1          # Ens size - 1

    mu = np.mean(E, 0)   # Ens mean
    A  = E - mu          # Ens anomalies

    xo = np.mean(Eo, 0)  # Obs ens mean
    Y  = Eo-xo           # Obs ens anomalies
    dy = y - xo          # Mean "innovation"

    if 'PertObs' in upd_a:
        # Uses classic, perturbed observations (Burgers'98)
        C  = Y.T @ Y + R.full*N1
        D  = mean0(hnoise.sample(N))
        YC = mrdiv(Y, C)
        KG = A.T @ YC
        HK = Y.T @ YC
        dE = (KG @ (y - D - Eo).T).T
        E  = E + dE

    elif 'Sqrt' in upd_a:
        # Uses a symmetric square root (ETKF)
        # to deterministically transform the ensemble.

        # The various versions below differ only numerically.
        # EVD is default, but for large N use SVD version.
        if upd_a == 'Sqrt' and N > Nx:
            upd_a = 'Sqrt svd'

        if 'explicit' in upd_a:
            # Not recommended due to numerical costs and instability.
            # Implementation using inv (in ens space)
            Pw = sla.inv(Y @ R.inv @ Y.T + N1*eye(N))
            T  = sla.sqrtm(Pw) * sqrt(N1)
            HK = R.inv @ Y.T @ Pw @ Y
            # KG = R.inv @ Y.T @ Pw @ A
        elif 'svd' in upd_a:
            # Implementation using svd of Y R^{-1/2}.
            V, s, _ = svd0(Y @ R.sym_sqrt_inv.T)
            d       = pad0(s**2, N) + N1
            Pw      = (V * d**(-1.0)) @ V.T
            T       = (V * d**(-0.5)) @ V.T * sqrt(N1)
            # docs/snippets/trHK.jpg
            trHK    = np.sum((s**2+N1)**(-1.0) * s**2)
        elif 'sS' in upd_a:
            # Same as 'svd', but with slightly different notation
            # (sometimes used by Sakov) using the normalization sqrt(N1).
            S       = Y @ R.sym_sqrt_inv.T / sqrt(N1)
            V, s, _ = svd0(S)
            d       = pad0(s**2, N) + 1
            Pw      = (V * d**(-1.0))@V.T / N1  # = G/(N1)
            T       = (V * d**(-0.5))@V.T
            # docs/snippets/trHK.jpg
            trHK    = np.sum((s**2 + 1)**(-1.0)*s**2)
        else:  # 'eig' in upd_a:
            # Implementation using eig. val. decomp.
            d, V   = sla.eigh(Y @ R.inv @ Y.T + N1*eye(N))
            T      = V@diag(d**(-0.5))@V.T * sqrt(N1)
            Pw     = V@diag(d**(-1.0))@V.T
            HK     = R.inv @ Y.T @ (V @ diag(d**(-1)) @ V.T) @ Y
        w = dy @ R.inv @ Y.T @ Pw
        E = mu + w@A + T@A

    elif 'Serial' in upd_a:
        # Observations assimilated one-at-a-time:
        inds = serial_inds(upd_a, y, R, A)
        #  Requires de-correlation:
        dy   = dy @ R.sym_sqrt_inv.T
        Y    = Y  @ R.sym_sqrt_inv.T
        # Enhancement in the nonlinear case:
        # re-compute Y each scalar obs assim.
        # But: little benefit, model costly (?),
        # updates cannot be accumulated on S and T.

        if any(x in upd_a for x in ['Stoch', 'ESOPS', 'Var1']):
            # More details: Misc/Serial_ESOPS.py.
            for i, j in enumerate(inds):

                # Perturbation creation
                if 'ESOPS' in upd_a:
                    # "2nd-O exact perturbation sampling"
                    if i == 0:
                        # Init -- increase nullspace by 1
                        V, s, UT = svd0(A)
                        s[N-2:] = 0
                        A = svdi(V, s, UT)
                        v = V[:, N-2]
                    else:
                        # Orthogonalize v wrt. the new A
                        #
                        # v = Zj - Yj (from paper) requires Y==HX.
                        # Instead: mult` should be c*ones(Nx) so we can
                        # project v into ker(A) such that v@A is null.
                        mult  = (v@A) / (Yj@A) # noqa
                        v     = v - mult[0]*Yj # noqa
                        v    /= sqrt(v@v)
                    Zj  = v*sqrt(N1)  # Standardized perturbation along v
                    Zj *= np.sign(rnd.rand()-0.5)  # Random sign
                else:
                    # The usual stochastic perturbations.
                    Zj = mean0(rnd.randn(N))  # Un-coloured noise
                    if 'Var1' in upd_a:
                        Zj *= sqrt(N/(Zj@Zj))

                # Select j-th obs
                Yj  = Y[:, j]       # [j] obs anomalies
                dyj = dy[j]         # [j] innov mean
                DYj = Zj - Yj       # [j] innov anomalies
                DYj = DYj[:, None]  # Make 2d vertical

                # Kalman gain computation
                C     = Yj@Yj + N1  # Total obs cov
                KGx   = Yj @ A / C  # KG to update state
                KGy   = Yj @ Y / C  # KG to update obs

                # Updates
                A    += DYj * KGx
                mu   += dyj * KGx
                Y    += DYj * KGy
                dy   -= dyj * KGy
            E = mu + A
        else:
            # "Potter scheme", "EnSRF"
            # - EAKF's two-stage "update-regress" form yields
            #   the same *ensemble* as this.
            # - The form below may be derived as "serial ETKF",
            #   but does not yield the same
            #   ensemble as 'Sqrt' (which processes obs as a batch)
            #   -- only the same mean/cov.
            T = eye(N)
            for j in inds:
                Yj = Y[:, j]
                C  = Yj@Yj + N1
                Tj = np.outer(Yj, Yj / (C + sqrt(N1*C)))
                T -= Tj @ T
                Y -= Tj @ Y
            w = [email protected]@T/N1
            E = mu + w@A + T@A

    elif 'DEnKF' == upd_a:
        # Uses "Deterministic EnKF" (sakov'08)
        C  = Y.T @ Y + R.full*N1
        YC = mrdiv(Y, C)
        KG = A.T @ YC
        HK = Y.T @ YC
        E  = E + KG@dy - 0.5*([email protected]).T

    else:
        raise KeyError("No analysis update method found: '" + upd_a + "'.")

    # Diagnostic: relative influence of observations
    if 'trHK' in locals():
        stats.trHK[kObs] = trHK      / hnoise.M
    elif 'HK' in locals():
        stats.trHK[kObs] = HK.trace()/hnoise.M

    return E
Пример #9
0
    def assimilate(self, HMM, xx, yy):
        N, xN, Nx  = self.N, self.xN, HMM.Dyn.M
        Rm12, Ri = HMM.Obs.noise.C.sym_sqrt_inv, HMM.Obs.noise.C.inv

        E = HMM.X0.sample(N)
        w = 1/N*np.ones(N)

        DD = None

        self.stats.assess(0, E=E, w=w)

        for k, ko, t, dt in progbar(HMM.tseq.ticker):
            E = HMM.Dyn(E, t-dt, dt)
            if HMM.Dyn.noise.C != 0:
                E += np.sqrt(dt)*(rnd.randn(N, Nx)@HMM.Dyn.noise.C.Right)

            if ko is not None:
                self.stats.assess(k, ko, 'f', E=E, w=w)
                y  = yy[ko]
                Eo = HMM.Obs(E, t)
                wD = w.copy()

                # Importance weighting
                innovs = (y - Eo) @ Rm12.T
                w      = reweight(w, innovs=innovs)

                # Resampling
                if trigger_resampling(w, self.NER, [self.stats, E, k, ko]):
                    # Weighted covariance factors
                    Aw = raw_C12(E, wD)
                    Yw = raw_C12(Eo, wD)

                    # EnKF-without-pertubations update
                    if N > Nx:
                        C       = Yw.T @ Yw + HMM.Obs.noise.C.full
                        KG      = mrdiv(Aw.T@Yw, C)
                        cntrs   = E + (y-Eo)@KG.T
                        Pa      = Aw.T@Aw - [email protected]@Aw
                        P_cholU = funm_psd(Pa, np.sqrt)
                        if DD is None or not self.re_use:
                            DD    = rnd.randn(N*xN, Nx)
                            chi2  = np.sum(DD**2, axis=1) * Nx/N
                            log_q = -0.5 * chi2
                    else:
                        V, sig, UT = svd0(Yw @ Rm12.T)
                        dgn      = pad0(sig**2, N) + 1
                        Pw       = (V * dgn**(-1.0)) @ V.T
                        cntrs    = E + (y-Eo)@[email protected]@Pw@Aw
                        P_cholU  = (V*dgn**(-0.5)).T @ Aw
                        # Generate N·xN random numbers from NormDist(0,1),
                        # and compute log(q(x))
                        if DD is None or not self.re_use:
                            rnk   = min(Nx, N-1)
                            DD    = rnd.randn(N*xN, N)
                            chi2  = np.sum(DD**2, axis=1) * rnk/N
                            log_q = -0.5 * chi2
                        # NB: the DoF_linalg/DoF_stoch correction
                        # is only correct "on average".
                        # It is inexact "in proportion" to [email protected],
                        # where V,s,UT = tsvd(Aw).
                        # Anyways, we're computing the tsvd of Aw below,
                        # so might as well compute q(x) instead of q(xi).

                    # Duplicate
                    ED  = cntrs.repeat(xN, 0)
                    wD  = wD.repeat(xN) / xN

                    # Sample q
                    AD = DD@P_cholU
                    ED = ED + AD

                    # log(prior_kernel(x))
                    s         = self.Qs*auto_bandw(N, Nx)
                    innovs_pf = AD @ tinv(s*Aw)
                    # NB: Correct: innovs_pf = (ED-E_orig) @ tinv(s*Aw)
                    #     But it seems to make no difference on well-tuned performance !
                    log_pf    = -0.5 * np.sum(innovs_pf**2, axis=1)

                    # log(likelihood(x))
                    innovs = (y - HMM.Obs(ED, t)) @ Rm12.T
                    log_L  = -0.5 * np.sum(innovs**2, axis=1)

                    # Update weights
                    log_tot = log_L + log_pf - log_q
                    wD      = reweight(wD, logL=log_tot)

                    # Resample and reduce
                    wroot = 1.0
                    while wroot < self.wroot_max:
                        idx, w = resample(wD, self.resampl, wroot=wroot, N=N)
                        dups   = sum(mask_unique_of_sorted(idx))
                        if dups == 0:
                            E = ED[idx]
                            break
                        else:
                            wroot += 0.1
            self.stats.assess(k, ko, 'u', E=E, w=w)
Пример #10
0
 def pad_rk(arr):
     return pad0(arr, min(N, HMM.Obs.M))
Пример #11
0
 def dgn_N(l1):
     return pad0((l1 * s)**2, N) + N1
Пример #12
0
 def pad_rk(arr):
     return pad0(arr, min(N, Ny))