DEFAULT_COLORSCALE = ["#EF8A62", "#F7F7F7", "#67A9CF"] DEFAULT_OPACITY = 0.8 mapbox_access_token = "pk.eyJ1IjoiYmVuam9uZXM0NzQ3IiwiYSI6ImNqczBoZWo1MzFlZ3Q0YW81YTFtcDVrN3AifQ.anJanZY5dXkl6JIC4P8RRQ" ''' ~~~~~~~~~~~~~~~~ ~~ APP LAYOUT ~~ ~~~~~~~~~~~~~~~~ ''' app.layout = html.Div(children=[ html.Div([ html.Div([ html.Div([ html.H4(children='SILVER'), html.P('RESULTS Select year:'), ]), html.Div([ dcc.Slider( id='years-slider', min=min(YEARS), max=max(YEARS), value=min(YEARS), marks={str(year): str(year) for year in YEARS}, ), ], style={ 'width': 400, 'margin': 25
app.logger.setLevel(logging.DEBUG) # To be able to assign callbacks before layout app.config["suppress_callback_exceptions"] = True # set layout options app.title = 'RECYCLE RIGHT' # Favicon app.head = [ html.Img(src='assets/favicon.ico', ), ] upload_tab = html.Div( children=[ html.H4("Image Classifier"), dcc.Upload( id='upload_image', children=html.Div(['Drag and Drop or ', html.A('Select Files')]), style={ 'width': '100%', 'height': '40px', 'lineHeight': '20px', 'borderWidth': '2px', 'borderStyle': 'dashed', 'borderRadius': '10px', 'textAlign': 'center', }, # Allow multiple files to be uploaded multiple=False)
}), html.Div( style={ 'width': '100%', 'padding': '20px', 'justify-content': 'center', 'display': 'flex', 'align-items': 'center' }, id='answers_list', children=[ dbc.Card( color='dark', outline=True, children=[ dbc.CardHeader([html.H4('Results')]), dbc.CardBody([ dash_table.DataTable( id='answers_table', columns=[{ "name": i, "id": i } for i in [ 'Answer', 'Probability', 'Context', 'Article' ]], style_table=style_table, style_cell=style_cell, style_as_list_view=True, style_header=style_header, style_data_conditional=
html.H6(["Made with ", html.A('Dash', href = 'https://dash.plotly.com/', style={'color':'#000000'}, target = '_blank)')], style={'textAlign':'right'}), html.H6("by Bruno Vieira Ribeiro - [email protected]", style={'textAlign':'right'}) ]) ], color='secondary', inverse=False), dbc.Row([ dbc.Col([ dbc.Card([ html.H4("Informações do jogo:"), dbc.CardImg(id ="game-img", src=meeples), ], color='secondary', inverse=False, style={"width": "10rem"}) ], width = {"size":2}), dbc.Col([ dbc.Card([ dbc.CardBody([ html.P(id='game-info', children ="Clique em um nó."), ]) ], color='secondary',
max_date_allowed=dt(2017, 12, 31), start_date=dt(2016, 1, 1).date(), end_date=dt(2017, 1, 1).date(), ) ############################################################################# # Sidebar Layout ############################################################################# sidebar = html.Div( [ DS4A_Img, # Add the DS4A_Img located in the assets folder html.Hr(), # Add an horizontal line #################################################### # Place the rest of Layout here #################################################### html.H4("Team 4"), html.Hr(), # dcc.Link(html.Button('back'), href='www.google.com'), dbc.Nav([ dbc.NavLink( html.Span([ html.I(className="fas fa-cloud", style={"margin-right": "0.5rem"}), "Exploratory Analysis", ], ), href="/exploratory", id="page-1-link", className='text-dark', ), dbc.NavLink( html.Span([
html.Div( children=[ html.Div( children=[ html.Div( className='float-left', children=[ html.Img(src='data:image/png;base64,{}'.format(TAB1_SIDEBAR_RIGHT_CARD_1_IMG_1.decode()), height=60) ] ), html.Div( className='text-right ', dir="rtl", children=[ html.H4( id="INFO_CARD_NUMBER_AQUIFER-TAB1_SIDEBAR_RIGHT_CARD1" ), html.Span( children="آبخوان" ) ] ) ], className='card-body text-dark' ), ], className='card border-dark my-2 bg-light' ), html.Div( children=[ html.Div(
style={ 'width': '100%', 'margin-right': '-10px' }), ], style={ 'display': 'inline-flex', 'width': '100%', 'margin-left': '-10px' }), dcc.Tabs([ dcc.Tab( label='Job Opportunities', children=[ html.Div(children=[ html.H4(jobs.iloc[0, 0], style={'font-size': '16pt'}), html.P(dcc.Markdown(jobs.iloc[0, 1])), ], style={ 'display': 'inline-block', 'max-width': '600px', 'vertical-align': 'top' }), html.Div( children=[ dcc.Graph(id='PlayerComWeek'), # dropdown html.Div(children=[ html.Label("State 1"), html.Label("State 2"), html.Label("Metric")
id='filters_tab2', ), html.Div( [ html.Div( [ dcc.Graph( id='movie_table'), ], className= 'pretty_container eight columns', ), html.Div( [ html.Div([ html.H4( 'Movie Keywords:'), html. P(id= 'update_movie_keywords', children=[ 'Click the movie title to see its keywords' ]), ], ), html.Div([ html.H4( 'Movie Overview:'), html. P(id= 'update_movie_overview', children=[ 'Click the movie title to see its overview'
html.Div(id='page-eda-content'), ], style={'background-color': 'black'}) # Page 6 Layout ------------------------------- page_6_layout = html.Div([ html.Div(className='row', children=[ html.Div( className='four columns div-user-controls', children=[ html.H1('Nelson Aalen Estimator'), html.Hr(), html.P( '''This section contains the nelson aalen implementations which are made using lifelines and plotly modules.'''), html.Hr(), html.H4( "The Nelson-Aalen approach can quickly give you a curve of cumulative hazard and estimate the hazard functions based on irregular time intervals."), html.H4( "Nelson-Aalen analysis is used to analyze how a given population evolves with time."), html.H4( "Here the time is the tenure(in months) for which the customer stayed in the company and the event is whether they churned or not.") ]), html.Div( className='eight columns div-for-charts bg-grey', children=[html.H2('Nelson Aalen plots on the teleco dataset'), dcc.Graph(id='naeplot', config={ 'displayModeBar': False}, animate=True, figure=naefig ), ]) ]), html.Div(id='page-6-content'),
def regionCheckBoxes(): region_list = areas_df['Area name'].unique().tolist() dicts_list = [] for region in region_list: dicts_list.append({'label': region, 'value': region}) return dcc.Dropdown(id='region-check-boxes', options=dicts_list, value='London', multi=False) app.layout = html.Div(children=[ html.Div([ html.Div([html.H4('Covid-19 UK Cases and Deaths')], className='four columns'), html.Div([ html.H4('Daily UK Deaths: {:,}'.format(int(daily_deaths_increase))) ], style={'color': 'rgb(99,110,250)'}, className='four columns'), html.Div([html.H4('Total UK Deaths: {:,}'.format(max_deaths))], style={'color': 'crimson'}, className='four columns') ], className='twelve columns'), html.Div([ html.Div([html.P('Select Region to see cases')], className='one columns'), html.Div([regionCheckBoxes()], className='five columns'),
from alpha_vantage.techindicators import TechIndicators api_key = 'UTBNYS0PG96GKLDJ' # pip install pyorbital from pyorbital.orbital import Orbital satellite = Orbital('TERRA') external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div( html.Div([ html.H2('Silicon Strategy (EBAY)'), html.H4('Use the following information to make intelligent decisions for technology stocks decide between a bear or a bull strategy today'), html.Div(id='live-update-text'), dcc.Graph(id='live-update-graph', style={ 'height': 800 },), dcc.Interval( id='interval-component', interval=5*60*1000, # in milliseconds n_intervals=0 ) ]) ) @app.callback(Output('live-update-text', 'children'), [Input('interval-component', 'n_intervals')])
style={'padding': '5px'}) ], style={ 'width': '30%', 'border': '1px DodgerBlue solid', 'display': 'inline-block' }), # Results Table html.Div( [ dcc.Loading(id='results_table_load', type='circle', children=[ html.Div([ html.H4(id='results_table_header'), dash_table.DataTable(id='results_table') ], style={ 'width': '50%', 'horizontalAlign': 'top' }) ]) ], style={ 'width': '30%', 'display': 'inline-block', 'float': 'right', 'horizontalAlign': 'top' }),
lg=3, xl=3), ], style={'padding-bottom': '30px'}, justify='around'), dbc.Row([ dbc.Col([dbc.Card(dbc.CardBody([category()]), className='col-con')], xs=12, sm=12, md=12, lg=4, xl=4), dbc.Col([ dbc.Card(dbc.CardBody([ html.H4('Most Profitable Sub Category', style={'color': 'white'}, className='text-center'), dbc.RadioItems(id='radio_sub', value='Sub Category', className='text-center', options=[ { 'label': 'Sub Category', 'value': 'Sub Category' }, { 'label': 'Region', 'value': 'Region' }, ], inline=True),
'background': '#fcc203', 'padding': '10px', 'padding-top': '0px' }, children=[ html.Div( style={'display': 'flex'}, children=[ html.H2('BeerMe', className="tagline-400", style={'padding-right': '10px'}), html.Div( style={'margin-top': '10px'}, children=[ html.H4( 'A Recommendation System for Untappd', className="verticalLine-2 tagline") ]) ]) ]), # tabs # dcc.Tabs(id="tabs", value='cbf', children=[ # dcc.Tab(label='Existing User', value='existing-user'), # dcc.Tab(label='Collaborative Filtering', value='collabfilt'), # dcc.Tab(label='Hybrid', value='hybrid'), # ]), # page content html.Div(id='page-content', style={
# First Row html.Div( [ # Image and Input container left html.Div( [ html.Img(id="bike image", height="180px", src="assets/bike_flipped.jpg", style={"border-radius": "20px"}), # Title display html.H1(children="How many bikes will be rented?"), # We display the most important feature's name html.H4(children="Prediction:", style={"fontSize": "25px"}), html.H2(id="prediction_result", style={"fontSize": "60px"}), ], className="pretty-container three columns"), # Title and main-sliders container right html.Div( [ html.Div([ html.H1('Dashboard Capital Bikeshare', style={ "textAlign": "center", "display": "flex", "alignItems": "center", "justifyContent": "center"
import dash_core_components as dcc import dash_html_components as html import pandas as pd df = pd.read_csv( 'https://gist.githubusercontent.com/chriddyp/' 'c78bf172206ce24f77d6363a2d754b59/raw/' 'c353e8ef842413cae56ae3920b8fd78468aa4cb2/' 'usa-agricultural-exports-2011.csv') def generate_table(dataframe, max_rows=10): return html.Table( # Header [html.Tr([html.Th(col) for col in dataframe.columns])] + # Body [html.Tr([ html.Td(dataframe.iloc[i][col]) for col in dataframe.columns ]) for i in range(min(len(dataframe), max_rows))] ) app = dash.Dash() app.layout = html.Div(children=[ html.H4(children='US Agricultural Exports (2011'), generate_table(df) ]) if __name__ == '__main__': app.run_server(debug=True)
sd_material_ui.Divider(), html.Div([ spacer, ]), html.Div([ html.Div([ html.Div([ html.P([html.Strong('Test for AppBar')]), sd_material_ui.AppBar( id='appbar', children=sd_material_ui.Toolbar( id='toolbar', children=[ html.H4(children='AppBar'), ]), ) ]), spacer, html.Div([ html.P([html.Strong('Test for drawer')]), sd_material_ui.Drawer( id='drawer', open=False, children=[ html.P(id='drawer-close-input', children='X'), html.H4(children='Drawer items'), html.Ul(children=[
{'a': 'AA', 'b': 1}, {'a': 'AB', 'b': 2}, {'a': 'BB', 'b': 3}, {'a': 'BC', 'b': 4}, {'a': 'CC', 'b': 5}, {'a': 'CD', 'b': 6} ] rows=DF_GAPMINDER.to_dict('records'), columns=sorted(DF_GAPMINDER.columns), print(rows) print(columns) app.layout = html.Div([ html.H4('Gapminder DataTable'), dt.DataTable( rows=DF_GAPMINDER.to_dict('records'), # optional - sets the order of columns columns=sorted(DF_GAPMINDER.columns), row_selectable=True, filterable=True, sortable=True, selected_row_indices=[], id='datatable-gapminder' ), html.Div(id='selected-indexes'), dcc.Graph( id='graph-gapminder' ),
], brand="Performance Report", brand_href="#", sticky="top", ) Image_1 = html.Div([ html.Img(src='data:image/png;base64,{}'.format(encoded_image_1.decode()), height=750, width=1183), ]) Image_2 = html.Div([ html.Img(src='data:image/png;base64,{}'.format(encoded_image_2.decode()), height=750, width=1183), html.H4("Annualised Potential Savings:"), dash_table.DataTable( id='table', columns=[{ "name": i, "id": i } for i in df.columns], data=df.to_dict('records'), ), ], style={'padding-bottom': '50px'}) body = dbc.Container( [ dbc.Row([dbc.Col(html.H3("Fleet Level Overview - Monthly KPI"))]), #Fleet level overview - AE
'label': '2013', 'value': '2013' }, { 'label': '2014', 'value': '2014' }, { 'label': '2015', 'value': '2015' }, { 'label': '2016', 'value': '2016' }], value="2006"), html.Br(), html.Hr(style={'border-style': 'dotted'}), html.H4("Small multiples of slope plots"), html.Div([dcc.Graph(id='Vis-1-1', )]), html.Br(), html.Div([dcc.Graph(id='Vis-1-2', )]), html.Br(), html.Div([dcc.Graph(id='Vis-1-3', )]), html.Br(), html.Div([dcc.Graph(id='Vis-1-4', )]), html.Br(), html.Div([dcc.Graph(id='Vis-1-5', )]), html.Br(), html.Div([dcc.Graph(id='Vis-1-6', )]), html.Br(), html.Div([dcc.Graph(id='Vis-1-7', )]), html.Br(), html.Div([dcc.Graph(id='Vis-1-8', )]),
'Customer Issue Prediction App', style={ 'font-family': 'Helvetica', "margin-left": "20", "margin-bottom": "0" }, className='eight columns', ) ], className='row'), html.Div([ html.H4( '--Developed by Alisa Ai--', style={ 'font-family': 'Helvetica', "margin-left": "10", "margin-bottom": "0" }, className='three columns', ) ], className='row') ]), #block 2 html.Div([ dcc.Store(id='memory'), html.Div([ html.Div( [ html.Label('Enter your complaints here: '),
type='number', value='8', min=4, max=16, step=1, style={ 'margin-left': "auto", "margin-right": "auto", 'align': 'center' }) ])), html.Div( className="six columns", children=[ html.Div([ html.Div(html.H4('Build your layout pattern'), style={"text-align": "center"}), html.Div(children=cyto.Cytoscape( id='cytoscape-grid', layout={ 'name': 'grid', 'rows': nrow, 'panningEnabled': False, 'zoomingEnabled': False, 'userZoomingEnabled': False }, stylesheet=my_stylesheet, elements=nodes + edges, style={ 'width': '400px', 'height': '400px',
def model_prediction_tab(): global NUMBER_OF_WAVFILES, FILE_COUNT, CONFIG_DATAS encoded_image_uploaded_file = NUMBER_OF_WAVFILES[FILE_COUNT] encoded_image_uploaded_file = base64.b64encode( open(encoded_image_uploaded_file, 'rb').read()) embeddings = generate_before_predict_BR.main( NUMBER_OF_WAVFILES[FILE_COUNT], 0, 0, 0) ############################################################################## # Get label names ############################################################################## label_names = CONFIG_DATAS.keys() ############################################################################## # Implementing using the keras usual training techinque ############################################################################## prediction_probs, prediction_rounded = \ predict_on_wavfile_binary_relevance.predict_on_embedding(\ embedding = embeddings, label_names = label_names, config_datas = CONFIG_DATAS) output_sound = [] for label_name, pred_round in zip(label_names, prediction_rounded): if pred_round == 1: output_sound += [label_name] if len(output_sound) == 1: output_sound = output_sound[0] elif len(output_sound) == 0: output_sound = 'None of the below' else: output_sound = str(output_sound) return html.Div( style={ 'color': 'green', 'fontSize': 14 }, children=[ html.Audio(id='myaudio', src='data:audio/WAV;base64,{}'.format( encoded_image_uploaded_file), controls=True, style={"margin-top": "20px"}), html.H4('Predictions rounded will be: ' + str(prediction_rounded)), dcc.Graph(id='example', figure={ 'data': [{ 'x': label_names, 'y': prediction_probs, 'marker': { 'color': 'rgb(158,202,225)' }, 'type': 'bar', "text": ["{0:.2f}%".format(i) for i in prediction_probs], "textposition": 'auto', }], 'layout': { 'title': 'probabilistic prediction graph ', 'titlefont': { 'family': 'Courier New, monospace', 'size': 22, 'color': 'green' }, 'xaxis': { 'title': 'Labels of the sound', 'titlefont': { 'family': 'Courier New, monospace', 'size': 18, 'color': 'green' } }, 'yaxis': { 'title': 'Percentage probabality', 'titlefont': { 'family': 'Courier New, monospace', 'size': 18, 'color': 'green' } }, 'height': 400, 'font': { 'color': '#7f7f7f' } } }, style={ 'marginBottom': 20, 'marginTop': 45, 'color': 'black' }), html.P('Selected File : ' + NUMBER_OF_WAVFILES[FILE_COUNT].split("/")[-1], style={ 'color': 'white', 'fontSize': 15 }) ])
fig_line.add_trace( go.Scatter(name=i, x=dff['date_ym'].values, y=dff['price'].values, mode='lines', marker_color=dff['color'].values[0])) return fig_line # ------------------------------------------------------------------------------ app.layout = html.Div(children=[ html.Div( html.H1(children='Airbnb Listings Analysis', style={'text-align': 'left'}), ), html.Div(children=[ html.H4(children='Listing Counts By Review Volumes', className='container_title'), dcc.Graph(id='review_slct', config={'displayModeBar': False}), ], className='twelve columns pretty_container', style={ 'width': '98%', 'margin-right': '0' }, id='review-div'), html.Div( children=[ html.H4(children='Listing Locations', className='container_title'), dcc.Dropdown( id='slct_city', options=[{ 'label': 'Barossa Valley',
import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output from app import app from funciones import importar_tablas, main_heuristicoB, formatear import pandas as pd import numpy as np import plotly.graph_objs as go import time layout = html.Div([ dbc.Container([ dbc.Row([ dbc.Col(dbc.Card(html.H4( children='MÉTODO HEURÍSTICO SIN RESTRICCIÓN DE INICIO', className="text-center text-light bg-dark"), body=True, color="dark"), className="mb-4") ]), dbc.Row([ dbc.Col(dcc.Checklist(options=[{ 'label': 'Mantener trazos', 'value': 'trazos' }], id='input_trazos', value=['trazos'], labelStyle={'font-size': 20}, inputStyle={ 'size': 10,
], style={ 'overflowX': 'scroll', 'overflowY': 'scroll', 'maxHeight': '500px' }) ]) external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = html.Div(children=[ html.Div(children=[ html.H4(children='データ概要'), generate_table(df, 5), html.H5('shape: {} raws × {} columns'.format(df.shape[0], df.shape[1])) ], style={'background': '#FFFFCC'}), html.Div(children=[ html.Div(children=[ html.H5('目的変数を選択してください'), dcc.Dropdown(id='select-target', options=[{ 'label': column, 'value': column } for column in df.columns]), html.Button(id="target-button", n_clicks=0, children="決定") ], style={'width': '40%'}),
import pandas as pd # %% EXAMPLE APPLICATION external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) data = [{'a': 1, 'b': 2, 'c': 3}, {'a': 10, 'b': 20, 'c': 30}] df = pd.DataFrame(data) def generate_table(dataframe, max_rows=10): return html.Table([ html.Thead(html.Tr([html.Th(col) for col in dataframe.columns])), html.Tbody([ html.Tr( [html.Td(dataframe.iloc[i][col]) for col in dataframe.columns]) for i in range(min(len(dataframe), max_rows)) ]) ]) app.layout = html.Div(children=[ html.H4(children='US Agriculture Exports (2011)'), generate_table(df) ]) if __name__ == '__main__': app.run_server(debug=True)
#----------------------- # DASH Implementation #----------------------- app.layout = html.Div([ html.Nav(children=[ html.H1(html.Center('Client Dashboard')), html.H2(html.Center('Thibaut Bizet')), html.Img(src="/assets/logo.png"), ]), html.Div(className="box", children=[ html.Div(className="dataframe", children=[ html.H4('''Sales Distribution by Marketplace'''), html.Iframe(src="assets/map.html", width="100%", height="600px"), ]), html.Div(className="dataframe1", children=[ html.H4('''Sales remuneration by units : '''), generate_table( comparaison[['marketplace', 'sales/units']]), ]), html.Div(className="dataframe1", children=[ html.H4('''Shipment price by units : '''), generate_table(comparaison[[ 'marketplace', 'shipping/units'
def layout_basic_params_div(): return html.Div([ html. P('Default: 39-40nt oligos spaced <=30 nts apart, favoring melting temperatures between 70-80C. Some parameter combinations may not be feasible given the input sequence', style={'margin-top': '25px'}), html.Table(children=[ html.Tr([ html.Th('Min oligo length'), html.Th('Max oligo length'), html.Th('Max untiled length') ]), html.Tr([ html.Td( dcc.Input(id='min-oligo-input', type='number', min=5, max=1000, value='39'), ), html.Td( dcc.Input(id='max-oligo-input', type='number', min=5, max=1000, value='40')), html.Td( dcc.Input(id='max-untiled-input', type='number', min=5, max=1000, value='30')) ]), html.Tr([ html.Td(html.H4('Tm range (lo/hi C)'), ), html.Td([ dcc.Input(id='tm-low-input', type='number', min=40, max=95, value='70'), ]), html.Td([ dcc.Input(id='tm-high-input', type='number', min=40, max=95, value='80'), ]), ]), html.Tr([ html.Td(html.H4('Oligo name prefix'), ), html.Td([ dcc.Input(id='oligo-prefix-input', type='text', placeholder='oligo', value='oligo', debounce=True), # html.Abbr('?', title='Oligos will be named consecutively as "<PREFIX>_<NUM>"') ]), html.Td( # html.Button(id='go-button2', children=html.B('Calculate')), # style = {'text-align': 'right'} ) ]) ]), ])
color_ref = "3" #### code to label: code_set = orderCore[['code', 'label']].drop_duplicates() #### Prepqre Dash apps app = dash.Dash(__name__) server = app.server app.css.append_css( {'external_url': 'https://codepen.io/chriddyp/pen/dZVMbK.css'}) app.layout = html.Div([ html.Div([ html.H4( id="header1", className="six columns", children="Feature space"), html.H4(id="header2", className="six columns", children="selected accessions") ], className="row"), html.Div([ dcc.Graph(id='local_pca', className='six columns', animate=True), html.Div(id='table-content', className='six columns') ], className='row'), html.Div([ html.Div(dcc.Markdown( children= """**Fig. 1** relative distances among accessions given cluster profiles selected and analysed. In fact, loadings plot\n of PCA run on the former."""),