Пример #1
0
def concatenate_row_chunks(array, group_every=1000):
    """
    When averaging, the output array's are substantially smaller, which
    can affect disk I/O since many small operations are submitted.
    This operation concatenates row chunks together so that more rows
    are submitted at once
    """

    # Single chunk already
    if len(array.chunks[0]) == 1:
        return array

    data = partial_reduce(np.concatenate,
                          array,
                          split_every={0: group_every},
                          reduced_meta=None,
                          keepdims=True)

    # NOTE(sjperkins)
    # partial_reduce sets the number of rows in each chunk
    # to 1, which is untrue. Correctly set the row chunks to nan,
    # steal the graph and recreate the array
    row_chunks = tuple(np.nan for _ in data.chunks[0])
    chunks = (row_chunks, ) + data.chunks[1:]
    graph = data.__dask_graph__()

    return da.Array(graph, data.name, chunks, dtype=data.dtype)
Пример #2
0
def concatenate_row_chunks(array, group_every=4):
    """
    Parameters
    ----------
    array : :class:`dask.array.Array`
        dask array to average.
        First dimension must correspond to the MS 'row' dimension
    group_every : int
        Number of adjust dask array chunks to group together.
        Defaults to 4.

    When averaging, the output array's are substantially smaller, which
    can affect disk I/O since many small operations are submitted.
    This operation concatenates row chunks together so that more rows
    are submitted at once
    """

    # Single chunk already
    if len(array.chunks[0]) == 1:
        return array

    # Restrict the number of chunks to group to the
    # actual number of chunks in the array
    group_every = min(len(array.chunks[0]), group_every)
    data = partial_reduce(_safe_concatenate,
                          array,
                          split_every={0: group_every},
                          reduced_meta=None,
                          keepdims=True)

    # NOTE(sjperkins)
    # partial_reduce sets the number of rows in each chunk
    # to 1, which is untrue. Correctly set the row chunks to nan,
    # steal the graph and recreate the array
    row_chunks = tuple(np.nan for _ in data.chunks[0])
    chunks = (row_chunks, ) + data.chunks[1:]
    graph = data.__dask_graph__()

    return da.Array(graph, data.name, chunks, dtype=data.dtype)