Пример #1
0
def example_function():
    x = da.random.random((100_000, 100_000, 10), chunks=(10_000, 10_000, 5))
    y = da.random.random((100_000, 100_000, 10), chunks=(10_000, 10_000, 5))
    z = (da.arcsin(x) + da.arccos(y)).sum(axis=(1, 2))

    with performance_report(filename="dask-report_mpi.html"):
        result = z.compute()
def xyz2lonlat(x__, y__, z__):
    """Get longitudes from cartesian coordinates.
    """
    R = 6370997.0
    lons = da.rad2deg(da.arccos(x__ / da.sqrt(x__ ** 2 + y__ ** 2))) * da.sign(y__)
    lats = da.sign(z__) * (90 - da.rad2deg(da.arcsin(da.sqrt(x__ ** 2 + y__ ** 2) / R)))

    return lons, lats
    def slerp(self, val, low, high):
        """Code from https://github.com/soumith/dcgan.torch/issues/14"""
        omega = da.arccos(da.clip(da.dot(low / da.linalg.norm(low), high.transpose() / da.linalg.norm(high)), -1, 1))
        so = da.sin(omega)

        if so == 0:
            return (1.0-val) * low + val * high # L'Hopital's rule/LERP
        return da.sin((1.0 - val) * omega) / so * low + da.sin(val * omega) / so * high
Пример #4
0
def xyz2lonlat(x__, y__, z__):
    """Get longitudes from cartesian coordinates.
    """
    R = 6370997.0
    lons = da.rad2deg(da.arccos(x__ / da.sqrt(x__ ** 2 + y__ ** 2))) * da.sign(y__)
    lats = da.sign(z__) * (90 - da.rad2deg(da.arcsin(da.sqrt(x__ ** 2 + y__ ** 2) / R)))

    return lons, lats
Пример #5
0
    def get_phaang(cos_vza, cos_sza, sin_vza, sin_sza, cos_raa):
        """
        Gets the phase angle
        """

        cos_phase_angle = da.clip(
            cos_vza * cos_sza + sin_vza * sin_sza * cos_raa, -1, 1)
        phase_angle = da.arccos(cos_phase_angle)
        sin_phase_angle = da.sin(phase_angle)

        return cos_phase_angle, phase_angle, sin_phase_angle
Пример #6
0
    def __call__(self, datasets, **info):
        """Create HNCC DNB composite."""
        if len(datasets) != 4:
            raise ValueError("Expected 4 datasets, got %d" % (len(datasets), ))

        dnb_data = datasets[0]
        sza_data = datasets[1]
        lza_data = datasets[2]
        # this algorithm assumes units of "W cm-2 sr-1" so if there are other
        # units we need to adjust for that
        if dnb_data.attrs.get("units", "W m-2 sr-1") == "W m-2 sr-1":
            unit_factor = 10000.
        else:
            unit_factor = 1.

        mda = dnb_data.attrs.copy()
        dnb_data = dnb_data.copy() / unit_factor

        # convert to decimal instead of %
        moon_illum_fraction = da.mean(datasets[3].data) * 0.01

        phi = da.rad2deg(da.arccos(2. * moon_illum_fraction - 1))

        vfl = 0.026 * phi + 4.0e-9 * (phi**4.)

        m_fullmoon = -12.74
        m_sun = -26.74
        m_moon = vfl + m_fullmoon

        gs_ = self.gain_factor(sza_data.data)

        r_sun_moon = 10.**((m_sun - m_moon) / -2.5)
        gl_ = r_sun_moon * self.gain_factor(lza_data.data)
        gtot = 1. / (1. / gs_ + 1. / gl_)

        dnb_data += 2.6e-10
        dnb_data *= gtot

        mda['name'] = self.attrs['name']
        mda['standard_name'] = 'ncc_radiance'
        dnb_data.attrs = mda
        return dnb_data
Пример #7
0
    def get_overlap(cos1, cos2, tan1, tan2, sin3, distance, hb, m_pi):
        """
        Applies the HB ratio transformation
        """

        OverlapInfo = namedtuple('OverlapInfo', 'tvar sint overlap temp')

        temp = (1.0 / cos1) + (1.0 / cos2)

        cost = da.clip(
            hb * da.sqrt(distance * distance +
                         tan1 * tan1 * tan2 * tan2 * sin3 * sin3) / temp, -1,
            1)

        tvar = da.arccos(cost)
        sint = da.sin(tvar)

        overlap = 1.0 / m_pi * (tvar - sint * cost) * temp
        overlap = da.maximum(overlap, 0)

        return OverlapInfo(tvar=tvar, sint=sint, overlap=overlap, temp=temp)
Пример #8
0
def test_arithmetic():
    x = np.arange(5).astype('f4') + 2
    y = np.arange(5).astype('i8') + 2
    z = np.arange(5).astype('i4') + 2
    a = da.from_array(x, chunks=(2,))
    b = da.from_array(y, chunks=(2,))
    c = da.from_array(z, chunks=(2,))
    assert eq(a + b, x + y)
    assert eq(a * b, x * y)
    assert eq(a - b, x - y)
    assert eq(a / b, x / y)
    assert eq(b & b, y & y)
    assert eq(b | b, y | y)
    assert eq(b ^ b, y ^ y)
    assert eq(a // b, x // y)
    assert eq(a ** b, x ** y)
    assert eq(a % b, x % y)
    assert eq(a > b, x > y)
    assert eq(a < b, x < y)
    assert eq(a >= b, x >= y)
    assert eq(a <= b, x <= y)
    assert eq(a == b, x == y)
    assert eq(a != b, x != y)

    assert eq(a + 2, x + 2)
    assert eq(a * 2, x * 2)
    assert eq(a - 2, x - 2)
    assert eq(a / 2, x / 2)
    assert eq(b & True, y & True)
    assert eq(b | True, y | True)
    assert eq(b ^ True, y ^ True)
    assert eq(a // 2, x // 2)
    assert eq(a ** 2, x ** 2)
    assert eq(a % 2, x % 2)
    assert eq(a > 2, x > 2)
    assert eq(a < 2, x < 2)
    assert eq(a >= 2, x >= 2)
    assert eq(a <= 2, x <= 2)
    assert eq(a == 2, x == 2)
    assert eq(a != 2, x != 2)

    assert eq(2 + b, 2 + y)
    assert eq(2 * b, 2 * y)
    assert eq(2 - b, 2 - y)
    assert eq(2 / b, 2 / y)
    assert eq(True & b, True & y)
    assert eq(True | b, True | y)
    assert eq(True ^ b, True ^ y)
    assert eq(2 // b, 2 // y)
    assert eq(2 ** b, 2 ** y)
    assert eq(2 % b, 2 % y)
    assert eq(2 > b, 2 > y)
    assert eq(2 < b, 2 < y)
    assert eq(2 >= b, 2 >= y)
    assert eq(2 <= b, 2 <= y)
    assert eq(2 == b, 2 == y)
    assert eq(2 != b, 2 != y)

    assert eq(-a, -x)
    assert eq(abs(a), abs(x))
    assert eq(~(a == b), ~(x == y))
    assert eq(~(a == b), ~(x == y))

    assert eq(da.logaddexp(a, b), np.logaddexp(x, y))
    assert eq(da.logaddexp2(a, b), np.logaddexp2(x, y))
    assert eq(da.exp(b), np.exp(y))
    assert eq(da.log(a), np.log(x))
    assert eq(da.log10(a), np.log10(x))
    assert eq(da.log1p(a), np.log1p(x))
    assert eq(da.expm1(b), np.expm1(y))
    assert eq(da.sqrt(a), np.sqrt(x))
    assert eq(da.square(a), np.square(x))

    assert eq(da.sin(a), np.sin(x))
    assert eq(da.cos(b), np.cos(y))
    assert eq(da.tan(a), np.tan(x))
    assert eq(da.arcsin(b/10), np.arcsin(y/10))
    assert eq(da.arccos(b/10), np.arccos(y/10))
    assert eq(da.arctan(b/10), np.arctan(y/10))
    assert eq(da.arctan2(b*10, a), np.arctan2(y*10, x))
    assert eq(da.hypot(b, a), np.hypot(y, x))
    assert eq(da.sinh(a), np.sinh(x))
    assert eq(da.cosh(b), np.cosh(y))
    assert eq(da.tanh(a), np.tanh(x))
    assert eq(da.arcsinh(b*10), np.arcsinh(y*10))
    assert eq(da.arccosh(b*10), np.arccosh(y*10))
    assert eq(da.arctanh(b/10), np.arctanh(y/10))
    assert eq(da.deg2rad(a), np.deg2rad(x))
    assert eq(da.rad2deg(a), np.rad2deg(x))

    assert eq(da.logical_and(a < 1, b < 4), np.logical_and(x < 1, y < 4))
    assert eq(da.logical_or(a < 1, b < 4), np.logical_or(x < 1, y < 4))
    assert eq(da.logical_xor(a < 1, b < 4), np.logical_xor(x < 1, y < 4))
    assert eq(da.logical_not(a < 1), np.logical_not(x < 1))
    assert eq(da.maximum(a, 5 - a), np.maximum(a, 5 - a))
    assert eq(da.minimum(a, 5 - a), np.minimum(a, 5 - a))
    assert eq(da.fmax(a, 5 - a), np.fmax(a, 5 - a))
    assert eq(da.fmin(a, 5 - a), np.fmin(a, 5 - a))

    assert eq(da.isreal(a + 1j * b), np.isreal(x + 1j * y))
    assert eq(da.iscomplex(a + 1j * b), np.iscomplex(x + 1j * y))
    assert eq(da.isfinite(a), np.isfinite(x))
    assert eq(da.isinf(a), np.isinf(x))
    assert eq(da.isnan(a), np.isnan(x))
    assert eq(da.signbit(a - 3), np.signbit(x - 3))
    assert eq(da.copysign(a - 3, b), np.copysign(x - 3, y))
    assert eq(da.nextafter(a - 3, b), np.nextafter(x - 3, y))
    assert eq(da.ldexp(c, c), np.ldexp(z, z))
    assert eq(da.fmod(a * 12, b), np.fmod(x * 12, y))
    assert eq(da.floor(a * 0.5), np.floor(x * 0.5))
    assert eq(da.ceil(a), np.ceil(x))
    assert eq(da.trunc(a / 2), np.trunc(x / 2))

    assert eq(da.degrees(b), np.degrees(y))
    assert eq(da.radians(a), np.radians(x))

    assert eq(da.rint(a + 0.3), np.rint(x + 0.3))
    assert eq(da.fix(a - 2.5), np.fix(x - 2.5))

    assert eq(da.angle(a + 1j), np.angle(x + 1j))
    assert eq(da.real(a + 1j), np.real(x + 1j))
    assert eq((a + 1j).real, np.real(x + 1j))
    assert eq(da.imag(a + 1j), np.imag(x + 1j))
    assert eq((a + 1j).imag, np.imag(x + 1j))
    assert eq(da.conj(a + 1j * b), np.conj(x + 1j * y))
    assert eq((a + 1j * b).conj(), (x + 1j * y).conj())

    assert eq(da.clip(b, 1, 4), np.clip(y, 1, 4))
    assert eq(da.fabs(b), np.fabs(y))
    assert eq(da.sign(b - 2), np.sign(y - 2))

    l1, l2 = da.frexp(a)
    r1, r2 = np.frexp(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    l1, l2 = da.modf(a)
    r1, r2 = np.modf(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    assert eq(da.around(a, -1), np.around(x, -1))
Пример #9
0
def test_arithmetic():
    x = np.arange(5).astype('f4') + 2
    y = np.arange(5).astype('i8') + 2
    z = np.arange(5).astype('i4') + 2
    a = da.from_array(x, chunks=(2, ))
    b = da.from_array(y, chunks=(2, ))
    c = da.from_array(z, chunks=(2, ))
    assert eq(a + b, x + y)
    assert eq(a * b, x * y)
    assert eq(a - b, x - y)
    assert eq(a / b, x / y)
    assert eq(b & b, y & y)
    assert eq(b | b, y | y)
    assert eq(b ^ b, y ^ y)
    assert eq(a // b, x // y)
    assert eq(a**b, x**y)
    assert eq(a % b, x % y)
    assert eq(a > b, x > y)
    assert eq(a < b, x < y)
    assert eq(a >= b, x >= y)
    assert eq(a <= b, x <= y)
    assert eq(a == b, x == y)
    assert eq(a != b, x != y)

    assert eq(a + 2, x + 2)
    assert eq(a * 2, x * 2)
    assert eq(a - 2, x - 2)
    assert eq(a / 2, x / 2)
    assert eq(b & True, y & True)
    assert eq(b | True, y | True)
    assert eq(b ^ True, y ^ True)
    assert eq(a // 2, x // 2)
    assert eq(a**2, x**2)
    assert eq(a % 2, x % 2)
    assert eq(a > 2, x > 2)
    assert eq(a < 2, x < 2)
    assert eq(a >= 2, x >= 2)
    assert eq(a <= 2, x <= 2)
    assert eq(a == 2, x == 2)
    assert eq(a != 2, x != 2)

    assert eq(2 + b, 2 + y)
    assert eq(2 * b, 2 * y)
    assert eq(2 - b, 2 - y)
    assert eq(2 / b, 2 / y)
    assert eq(True & b, True & y)
    assert eq(True | b, True | y)
    assert eq(True ^ b, True ^ y)
    assert eq(2 // b, 2 // y)
    assert eq(2**b, 2**y)
    assert eq(2 % b, 2 % y)
    assert eq(2 > b, 2 > y)
    assert eq(2 < b, 2 < y)
    assert eq(2 >= b, 2 >= y)
    assert eq(2 <= b, 2 <= y)
    assert eq(2 == b, 2 == y)
    assert eq(2 != b, 2 != y)

    assert eq(-a, -x)
    assert eq(abs(a), abs(x))
    assert eq(~(a == b), ~(x == y))
    assert eq(~(a == b), ~(x == y))

    assert eq(da.logaddexp(a, b), np.logaddexp(x, y))
    assert eq(da.logaddexp2(a, b), np.logaddexp2(x, y))
    assert eq(da.exp(b), np.exp(y))
    assert eq(da.log(a), np.log(x))
    assert eq(da.log10(a), np.log10(x))
    assert eq(da.log1p(a), np.log1p(x))
    assert eq(da.expm1(b), np.expm1(y))
    assert eq(da.sqrt(a), np.sqrt(x))
    assert eq(da.square(a), np.square(x))

    assert eq(da.sin(a), np.sin(x))
    assert eq(da.cos(b), np.cos(y))
    assert eq(da.tan(a), np.tan(x))
    assert eq(da.arcsin(b / 10), np.arcsin(y / 10))
    assert eq(da.arccos(b / 10), np.arccos(y / 10))
    assert eq(da.arctan(b / 10), np.arctan(y / 10))
    assert eq(da.arctan2(b * 10, a), np.arctan2(y * 10, x))
    assert eq(da.hypot(b, a), np.hypot(y, x))
    assert eq(da.sinh(a), np.sinh(x))
    assert eq(da.cosh(b), np.cosh(y))
    assert eq(da.tanh(a), np.tanh(x))
    assert eq(da.arcsinh(b * 10), np.arcsinh(y * 10))
    assert eq(da.arccosh(b * 10), np.arccosh(y * 10))
    assert eq(da.arctanh(b / 10), np.arctanh(y / 10))
    assert eq(da.deg2rad(a), np.deg2rad(x))
    assert eq(da.rad2deg(a), np.rad2deg(x))

    assert eq(da.logical_and(a < 1, b < 4), np.logical_and(x < 1, y < 4))
    assert eq(da.logical_or(a < 1, b < 4), np.logical_or(x < 1, y < 4))
    assert eq(da.logical_xor(a < 1, b < 4), np.logical_xor(x < 1, y < 4))
    assert eq(da.logical_not(a < 1), np.logical_not(x < 1))
    assert eq(da.maximum(a, 5 - a), np.maximum(a, 5 - a))
    assert eq(da.minimum(a, 5 - a), np.minimum(a, 5 - a))
    assert eq(da.fmax(a, 5 - a), np.fmax(a, 5 - a))
    assert eq(da.fmin(a, 5 - a), np.fmin(a, 5 - a))

    assert eq(da.isreal(a + 1j * b), np.isreal(x + 1j * y))
    assert eq(da.iscomplex(a + 1j * b), np.iscomplex(x + 1j * y))
    assert eq(da.isfinite(a), np.isfinite(x))
    assert eq(da.isinf(a), np.isinf(x))
    assert eq(da.isnan(a), np.isnan(x))
    assert eq(da.signbit(a - 3), np.signbit(x - 3))
    assert eq(da.copysign(a - 3, b), np.copysign(x - 3, y))
    assert eq(da.nextafter(a - 3, b), np.nextafter(x - 3, y))
    assert eq(da.ldexp(c, c), np.ldexp(z, z))
    assert eq(da.fmod(a * 12, b), np.fmod(x * 12, y))
    assert eq(da.floor(a * 0.5), np.floor(x * 0.5))
    assert eq(da.ceil(a), np.ceil(x))
    assert eq(da.trunc(a / 2), np.trunc(x / 2))

    assert eq(da.degrees(b), np.degrees(y))
    assert eq(da.radians(a), np.radians(x))

    assert eq(da.rint(a + 0.3), np.rint(x + 0.3))
    assert eq(da.fix(a - 2.5), np.fix(x - 2.5))

    assert eq(da.angle(a + 1j), np.angle(x + 1j))
    assert eq(da.real(a + 1j), np.real(x + 1j))
    assert eq((a + 1j).real, np.real(x + 1j))
    assert eq(da.imag(a + 1j), np.imag(x + 1j))
    assert eq((a + 1j).imag, np.imag(x + 1j))
    assert eq(da.conj(a + 1j * b), np.conj(x + 1j * y))
    assert eq((a + 1j * b).conj(), (x + 1j * y).conj())

    assert eq(da.clip(b, 1, 4), np.clip(y, 1, 4))
    assert eq(da.fabs(b), np.fabs(y))
    assert eq(da.sign(b - 2), np.sign(y - 2))

    l1, l2 = da.frexp(a)
    r1, r2 = np.frexp(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    l1, l2 = da.modf(a)
    r1, r2 = np.modf(x)
    assert eq(l1, r1)
    assert eq(l2, r2)

    assert eq(da.around(a, -1), np.around(x, -1))
Пример #10
0
    def get_reflectance(self, sun_zenith, sat_zenith, azidiff, bandname, redband=None):
        """Get the reflectance from the three sun-sat angles"""
        # Get wavelength in nm for band:
        if isinstance(bandname, float):
            LOG.warning('A wavelength is provided instead of band name - ' +
                        'disregard the relative spectral responses and assume ' +
                        'it is the effective wavelength: %f (micro meter)', bandname)
            wvl = bandname * 1000.0
        else:
            wvl = self.get_effective_wavelength(bandname)
            if wvl is None:
                LOG.error("Can't get effective wavelength for band %s on platform %s and sensor %s",
                          str(bandname), self.platform_name, self.sensor)
                return None
            else:
                wvl = wvl * 1000.0

        rayl, wvl_coord, azid_coord, satz_sec_coord, sunz_sec_coord = \
            self.get_reflectance_lut()

        # force dask arrays
        compute = False
        if HAVE_DASK and not isinstance(sun_zenith, Array):
            compute = True
            sun_zenith = from_array(sun_zenith, chunks=sun_zenith.shape)
            sat_zenith = from_array(sat_zenith, chunks=sat_zenith.shape)
            azidiff = from_array(azidiff, chunks=azidiff.shape)
            if redband is not None:
                redband = from_array(redband, chunks=redband.shape)

        clip_angle = rad2deg(arccos(1. / sunz_sec_coord.max()))
        sun_zenith = clip(sun_zenith, 0, clip_angle)
        sunzsec = 1. / cos(deg2rad(sun_zenith))
        clip_angle = rad2deg(arccos(1. / satz_sec_coord.max()))
        sat_zenith = clip(sat_zenith, 0, clip_angle)
        satzsec = 1. / cos(deg2rad(sat_zenith))
        shape = sun_zenith.shape

        if not(wvl_coord.min() < wvl < wvl_coord.max()):
            LOG.warning(
                "Effective wavelength for band %s outside 400-800 nm range!",
                str(bandname))
            LOG.info(
                "Set the rayleigh/aerosol reflectance contribution to zero!")
            if HAVE_DASK:
                chunks = sun_zenith.chunks if redband is None \
                    else redband.chunks
                res = zeros(shape, chunks=chunks)
                return res.compute() if compute else res
            else:
                return zeros(shape)

        idx = np.searchsorted(wvl_coord, wvl)
        wvl1 = wvl_coord[idx - 1]
        wvl2 = wvl_coord[idx]

        fac = (wvl2 - wvl) / (wvl2 - wvl1)
        raylwvl = fac * rayl[idx - 1, :, :, :] + (1 - fac) * rayl[idx, :, :, :]
        tic = time.time()

        smin = [sunz_sec_coord[0], azid_coord[0], satz_sec_coord[0]]
        smax = [sunz_sec_coord[-1], azid_coord[-1], satz_sec_coord[-1]]
        orders = [
            len(sunz_sec_coord), len(azid_coord), len(satz_sec_coord)]
        f_3d_grid = atleast_2d(raylwvl.ravel())

        if HAVE_DASK and isinstance(smin[0], Array):
            # compute all of these at the same time before passing to the interpolator
            # otherwise they are computed separately
            smin, smax, orders, f_3d_grid = da.compute(smin, smax, orders, f_3d_grid)
        minterp = MultilinearInterpolator(smin, smax, orders)
        minterp.set_values(f_3d_grid)

        def _do_interp(minterp, sunzsec, azidiff, satzsec):
            interp_points2 = np.vstack((sunzsec.ravel(),
                                        180 - azidiff.ravel(),
                                        satzsec.ravel()))
            res = minterp(interp_points2)
            return res.reshape(sunzsec.shape)

        if HAVE_DASK:
            ipn = map_blocks(_do_interp, minterp, sunzsec, azidiff,
                             satzsec, dtype=raylwvl.dtype,
                             chunks=azidiff.chunks)
        else:
            ipn = _do_interp(minterp, sunzsec, azidiff, satzsec)

        LOG.debug("Time - Interpolation: {0:f}".format(time.time() - tic))

        ipn *= 100
        res = ipn
        if redband is not None:
            res = where(redband < 20., res,
                        (1 - (redband - 20) / 80) * res)

        res = clip(res, 0, 100)
        if compute:
            res = res.compute()
        return res
Пример #11
0
import sys
from dask.distributed import Client
import  dask.array as da


if __name__ == '__main__':

    client = Client(sys.argv[1])  # start distributed scheduler locally.  Launch dashboard

    # input("open browser")



    x = da.random.random((10000, 10000, 10), chunks = (1000, 1000, 5))
    y = da.random.random((10000, 10000, 10), chunks = (1000, 1000, 5))
    z = (da.arcsin(x) + da.arccos(y)).sum(axis=(1, 2))

    z.compute()

    # input("[Enter] to quit")

    client.close()
Пример #12
0
def box_vectors_to_lengths_and_angles(a, b, c):
    """Convert box vectors into the lengths and angles defining the box.

    Addapted from mdtraj.utils.unitcell.box_vectors_to_lengths_and_angles()
    Parameters
    ----------
    a : np.ndarray
        the vector defining the first edge of the periodic box (length 3), or
        an array of this vector in multiple frames, where a[i,:] gives the
        length 3 array of vector a in each frame of a simulation
    b : np.ndarray
        the vector defining the second edge of the periodic box (length 3), or
        an array of this vector in multiple frames, where b[i,:] gives the
        length 3 array of vector a in each frame of a simulation
    c : np.ndarray
        the vector defining the third edge of the periodic box (length 3), or
        an array of this vector in multiple frames, where c[i,:] gives the
        length 3 array of vector a in each frame of a simulation

    Returns
    -------
    a_length : dask.array
        length of Bravais unit vector **a**
    b_length : dask.array
        length of Bravais unit vector **b**
    c_length : dask.array
        length of Bravais unit vector **c**
    alpha : dask.array
        angle between vectors **b** and **c**, in degrees.
    beta : dask.array
        angle between vectors **c** and **a**, in degrees.
    gamma : dask.array
        angle between vectors **a** and **b**, in degrees.
    """
    if not a.shape == b.shape == c.shape:
        raise TypeError("Shape is messed up.")
    if not a.shape[-1] == 3:
        raise TypeError("The last dimension must be length 3")
    if not (a.ndim in [1, 2]):
        raise ValueError(
            "vectors must be 1d or 2d (for a vectorized "
            "operation on multiple frames)"
        )
    last_dim = a.ndim - 1

    a_length = (da.sum(a * a, axis=last_dim)) ** (1 / 2)
    b_length = (da.sum(b * b, axis=last_dim)) ** (1 / 2)
    c_length = (da.sum(c * c, axis=last_dim)) ** (1 / 2)

    # we allow 2d input, where the first dimension is the frame index
    # so we want to do the dot product only over the last dimension
    alpha = da.arccos(da.einsum("...i, ...i", b, c) / (b_length * c_length))
    beta = da.arccos(da.einsum("...i, ...i", c, a) / (c_length * a_length))
    gamma = da.arccos(da.einsum("...i, ...i", a, b) / (a_length * b_length))

    # convert to degrees
    alpha = alpha * 180.0 / np.pi
    beta = beta * 180.0 / np.pi
    gamma = gamma * 180.0 / np.pi

    return a_length, b_length, c_length, alpha, beta, gamma
Пример #13
0
    def get_reflectance(self, sun_zenith, sat_zenith, azidiff, bandname, redband=None):
        """Get the reflectance from the three sun-sat angles"""
        # Get wavelength in nm for band:
        if isinstance(bandname, float):
            LOG.warning('A wavelength is provided instead of band name - ' +
                        'disregard the relative spectral responses and assume ' +
                        'it is the effective wavelength: %f (micro meter)', bandname)
            wvl = bandname * 1000.0
        else:
            wvl = self.get_effective_wavelength(bandname)
            wvl = wvl * 1000.0

        rayl, wvl_coord, azid_coord, satz_sec_coord, sunz_sec_coord = self.get_reflectance_lut()

        # force dask arrays
        compute = False
        if HAVE_DASK and not isinstance(sun_zenith, Array):
            compute = True
            sun_zenith = from_array(sun_zenith, chunks=sun_zenith.shape)
            sat_zenith = from_array(sat_zenith, chunks=sat_zenith.shape)
            azidiff = from_array(azidiff, chunks=azidiff.shape)
            if redband is not None:
                redband = from_array(redband, chunks=redband.shape)

        clip_angle = rad2deg(arccos(1. / sunz_sec_coord.max()))
        sun_zenith = clip(sun_zenith, 0, clip_angle)
        sunzsec = 1. / cos(deg2rad(sun_zenith))
        clip_angle = rad2deg(arccos(1. / satz_sec_coord.max()))
        sat_zenith = clip(sat_zenith, 0, clip_angle)
        satzsec = 1. / cos(deg2rad(sat_zenith))
        shape = sun_zenith.shape

        if not(wvl_coord.min() < wvl < wvl_coord.max()):
            LOG.warning(
                "Effective wavelength for band %s outside 400-800 nm range!",
                str(bandname))
            LOG.info(
                "Set the rayleigh/aerosol reflectance contribution to zero!")
            if HAVE_DASK:
                chunks = sun_zenith.chunks if redband is None else redband.chunks
                res = zeros(shape, chunks=chunks)
                return res.compute() if compute else res
            else:
                return zeros(shape)

        idx = np.searchsorted(wvl_coord, wvl)
        wvl1 = wvl_coord[idx - 1]
        wvl2 = wvl_coord[idx]

        fac = (wvl2 - wvl) / (wvl2 - wvl1)
        raylwvl = fac * rayl[idx - 1, :, :, :] + (1 - fac) * rayl[idx, :, :, :]
        tic = time.time()

        smin = [sunz_sec_coord[0], azid_coord[0], satz_sec_coord[0]]
        smax = [sunz_sec_coord[-1], azid_coord[-1], satz_sec_coord[-1]]
        orders = [
            len(sunz_sec_coord), len(azid_coord), len(satz_sec_coord)]
        f_3d_grid = atleast_2d(raylwvl.ravel())

        if HAVE_DASK and isinstance(smin[0], Array):
            # compute all of these at the same time before passing to the interpolator
            # otherwise they are computed separately
            smin, smax, orders, f_3d_grid = da.compute(smin, smax, orders, f_3d_grid)
        minterp = MultilinearInterpolator(smin, smax, orders)
        minterp.set_values(f_3d_grid)

        if HAVE_DASK:
            ipn = map_blocks(self._do_interp, minterp, sunzsec, azidiff,
                             satzsec, dtype=raylwvl.dtype, chunks=azidiff.chunks)
        else:
            ipn = self._do_interp(minterp, sunzsec, azidiff, satzsec)

        LOG.debug("Time - Interpolation: {0:f}".format(time.time() - tic))

        ipn *= 100
        res = ipn
        if redband is not None:
            res = where(redband < 20., res,
                        (1 - (redband - 20) / 80) * res)

        res = clip(res, 0, 100)
        if compute:
            res = res.compute()
        return res
Пример #14
0
def sun_zenith_angle(utc_time, lon, lat):
    """Sun-zenith angle for *lon*, *lat* at *utc_time*.
    lon,lat in degrees.
    The angle returned is given in degrees
    """
    return da.rad2deg(da.arccos(cos_zen(utc_time, lon, lat)))
Пример #15
0
import dask.array as da

a = da.random.random((100_000, 100_000, 10))
b = (da.arcsin(a) + da.arccos(a)).sum(axis=(1, 2))
result = b.compute()

x = da.random.random(100_000, chunks=(10, ))
x.sum().compute()  # Slow
y = x.rechunk((1000, ))
y.sum().compute()