import numpy as np from dat_to_file import DataToFile path_prefix = r"C:\Users\asus\Desktop\DT_Crane_v3.0\APP_models_gyration_v2.0\\" path_switch = r'pre_pedestal_gyration\\' name = r'pre_pedestal_gyration_v2\\' # 读取路径(读pre) path_four_read = path_prefix + path_switch # 写入路径 path_four_write = path_prefix + r"post_360\\" # 网格类型 geometry_type = ['3D4_P'] # 训练自变量 degreeArr = [0, 21, 42, 64] forceArr = [125, 250, 375, 500] gyrationArr = [0, 22.5, 45] combine = [] for iDegree in range(len(degreeArr)): for iForce in range(len(forceArr)): for iGyration in range(len(gyrationArr)): # combine.append((degreeArr[iDegree], forceArr[iForce])) combine.append( (degreeArr[iDegree], forceArr[iForce], gyrationArr[iGyration])) fd = np.array(combine) # print(fd) dtf = DataToFile(path_four_read, path_four_write, geometry_type) dtf.dataSaveToTXT_RBF(v_fd=fd, rbf_type='lin_a', which_part=name[4:-2])
from dat_to_file import DataToFile path_prefix = r"C:\Users\asus\Desktop\DT_Crane_v3.0\APP_models_gyration_v2.0\\" path_switch = r'pre_pedestal_gyration\\' name = r'pre_pedestal_gyration_v2\\' # 读取路径(读pre) path_four_read = path_prefix + path_switch # 写入路径 path_four_write = path_prefix + r"post_360\\" # 网格类型 geometry_type = ['3D4_P'] # 训练自变量 degreeArr = [0, 21, 42, 64] forceArr = [125, 250, 375, 500] gyrationArr = [0, 22.5, 45] combine = [] for iDegree in range(len(degreeArr)): for iForce in range(len(forceArr)): for iGyration in range(len(gyrationArr)): # combine.append((degreeArr[iDegree], forceArr[iForce])) combine.append( (degreeArr[iDegree], forceArr[iForce], gyrationArr[iGyration])) fd = np.array(combine) # print(fd) dtf = DataToFile(path_four_read, path_four_write, geometry_type) dtf.dataToPostFile_v2_Bysorted(v_fd=fd, rbf_type='lin_a', which_part=name[4:-2])
path_train_stress = r'stress_train\\' path_read_train_stress = path_prefix + path_train_stress path_read_real_stress = path_prefix + path_real_stress path_real_displacement = r'dopAndCoord_point\\' path_train_displacement = r'displacement_train\\' path_read_train_displacement = path_prefix + path_train_displacement path_read_real_displacement = path_prefix + path_real_displacement # 网格类型 geometry_type = ['3D4_L'] # 训练自变量 # GPR # fd_train = np.asarray([0, 21, 42, 64]).reshape(-1, 1) # other fd_train = np.asarray([0, 21, 42, 64]) # rbf_type='lin_a' rbf_type = 'mq' prs_type = 'simple' # 训练模型 dtf_stress = DataToFile(path_read_train_stress, None, geometry_type) # dtf_stress.dataToPostFile_paper_result_pulley(fd_train, path_real_data=path_read_real_stress, rbf_type=rbf_type) dtf_stress.dataToPostFile_paper_result_pulley( fd_train, path_real_data=path_read_real_stress, rbf_type=prs_type) dtf_dis = DataToFile(path_read_train_displacement, None, geometry_type) # dtf_dis.dataToPostFile_paper_result_pulley(fd_train, path_real_data=path_read_real_displacement, rbf_type=rbf_type) dtf_dis.dataToPostFile_paper_result_pulley( fd_train, path_real_data=path_read_real_displacement, rbf_type=prs_type)