def get_jigsaw_dataloader(args): #Only for DA names, labels = _dataset_info( join(dirname(__file__), 'txt_lists', args.target + '.txt')) img_tr = get_train_transformers(args) train_dataset = Dataset(names, labels, args.path_dataset, img_transformer=img_tr, beta_scrambled=args.beta_scrambled, beta_rotated=args.beta_rotated, beta_odd=args.beta_odd, rotation=False, odd=False) dataset = ConcatDataset([train_dataset]) loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True, drop_last=False) return loader
def get_val_dataloader(args): names, labels = _dataset_info( join(dirname(__file__), 'txt_lists', args.target + '.txt')) img_tr = get_val_transformer(args) val_dataset = TestDataset(names, labels, args.path_dataset, img_transformer=img_tr) dataset = ConcatDataset([val_dataset]) loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=4, pin_memory=True, drop_last=False) return loader
def get_trainTargetAsSource_dataloader(args): #used to create dataset of target images ready for jigsaw task ( only in training da!!) names, labels = _dataset_info( join(dirname(__file__), 'txt_lists', args.target + '.txt')) img_transformer = get_train_transformers(args) train_dataset = Dataset(names, labels, args.path_dataset, img_transformer=img_transformer, betaJigen=args.betaJigen, rotation=args.rotation, oddOneOut=args.oddOneOut) #val_dataset = TestDataset(names, labels,args.path_dataset, img_transformer=img_tr,betaJigen = args.betaJigen) dataset = ConcatDataset([train_dataset]) loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True) return loader