from data.dataset import H5PY_RW from data.data_tools import read_metadata, males_keys, females_keys from data.dataset import Mixer from models.adapt import Adapt from models.dpcl import DPCL from utils.tools import getETA import time import numpy as np import tensorflow as tf import config import os H5_dic = read_metadata() chunk_size = 512*40 males = H5PY_RW('test_raw.h5py', subset = males_keys(H5_dic)) fem = H5PY_RW('test_raw.h5py', subset = females_keys(H5_dic)) print 'Data with', len(H5_dic), 'male and female speakers' print males.length(), 'elements' print fem.length(), 'elements' mixed_data = Mixer([males, fem], chunk_size= chunk_size, with_mask=False, with_inputs=True) #### #### PREVIOUS MODEL CONFIG #### N = 256 max_pool = 256
from data.dataset import H5PY_RW, Mixer from models.das import DAS from data.data_tools import read_data_header, males_keys, females_keys from utils.audio import istft_ import config import numpy as np import tensorflow as tf if __name__ == "__main__": H5_dico = read_data_header() Males = H5PY_RW() Males.open_h5_dataset('test.h5py', subset=males_keys(H5_dico)) Males.set_chunk(config.chunk_size) Males.shuffle() print 'Male voices loaded: ', Males.length(), ' items' Females = H5PY_RW() Females.open_h5_dataset('test.h5py', subset=females_keys(H5_dico)) Females.set_chunk(config.chunk_size) Females.shuffle() print 'Female voices loaded: ', Females.length(), ' items' Mixer = Mixer([Males, Females]) das_model = DAS(S=len(Mixer.get_labels()), T=config.chunk_size) das_model.init() for i in range(100):
import os import sys import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Get your datasets from data.dataset import H5PY_RW from data.data_tools import read_metadata, males_keys, females_keys file = 'test_raw_16k.h5py' H5_dic = read_metadata() chunk_size = 512 * 10 males = H5PY_RW(file, subset=males_keys(H5_dic)).set_chunk(chunk_size).shuffle() fem = H5PY_RW(file, subset=females_keys(H5_dic)).set_chunk(chunk_size).shuffle() print 'Data with', len(H5_dic), 'male and female speakers' # Mixing the dataset from data.dataset import Mixer mixed_data = Mixer([males, fem], with_mask=False, with_inputs=True) # Training set selection mixed_data.select_split(0) # Model pretrained loading N = 256