Пример #1
0
def main():
    args = parser.parse_args()
    with open(args.config) as f:
        config = yaml.load(f)
    for k, v in config['common'].items():
        setattr(args, k, v)

    test_transforms = transforms.Compose([d_utils.PointcloudToTensor()])

    test_dataset = ModelNet40Cls(num_points=args.num_points,
                                 root=args.data_root,
                                 transforms=test_transforms,
                                 train=False)
    test_dataloader = DataLoader(test_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=int(args.workers),
                                 pin_memory=True)

    model = DensePoint(num_classes=args.num_classes,
                       input_channels=args.input_channels,
                       use_xyz=True)
    model.cuda()

    if args.checkpoint is not '':
        model.load_state_dict(torch.load(args.checkpoint))
        print('Load model successfully: %s' % (args.checkpoint))

    # evaluate
    PointcloudScale = d_utils.PointcloudScale()  # initialize random scaling
    model.eval()
    global_acc = 0
    for i in range(NUM_REPEAT):
        preds = []
        labels = []

        s = time.time()
        for j, data in enumerate(test_dataloader, 0):
            points, target = data
            points, target = points.cuda(), target.cuda()
            points, target = Variable(points,
                                      volatile=True), Variable(target,
                                                               volatile=True)
            # points [batch_size, num_points, dimensions], e.g., [256, 2048, 3]

            # furthest point sampling
            # fps_idx = pointnet2_utils.furthest_point_sample(points, 1200)  # (B, npoint)

            # random sampling
            fps_idx = np.random.randint(0,
                                        points.shape[1] - 1,
                                        size=[points.shape[0], 1200])
            fps_idx = torch.from_numpy(fps_idx).type(torch.IntTensor).cuda()

            pred = 0
            for v in range(NUM_VOTE):
                new_fps_idx = fps_idx[:,
                                      np.random.choice(1200, args.
                                                       num_points, False)]
                new_points = pointnet2_utils.gather_operation(
                    points.transpose(1, 2).contiguous(),
                    new_fps_idx).transpose(1, 2).contiguous()
                if v > 0:
                    new_points.data = PointcloudScale(new_points.data)
                pred += F.softmax(model(new_points), dim=1)
            pred /= NUM_VOTE
            target = target.view(-1)
            _, pred_choice = torch.max(pred.data, -1)

            preds.append(pred_choice)
            labels.append(target.data)
        e = time.time()

        preds = torch.cat(preds, 0)
        labels = torch.cat(labels, 0)
        acc = (preds == labels).sum() / labels.numel()
        if acc > global_acc:
            global_acc = acc
        print('Repeat %3d \t Acc: %0.6f' % (i + 1, acc))
        print('time (secs) for 1 epoch: ', (e - s))
    print('\nBest voting acc: %0.6f' % (global_acc))
Пример #2
0
    parser.add_argument('--visdom-port', type=int, default=8097)

    return parser.parse_args()


lr_clip = 1e-5
bnm_clip = 1e-2

if __name__ == "__main__":
    args = parse_args()

    BASE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data')

    transforms = transforms.Compose([
        d_utils.PointcloudToTensor(),
        d_utils.PointcloudScale(),
        d_utils.PointcloudRotate(),
        d_utils.PointcloudRotatePerturbation(),
        d_utils.PointcloudTranslate(),
        d_utils.PointcloudJitter(),
        d_utils.PointcloudRandomInputDropout()
    ])

    test_set = ModelNet40Cls(args.num_points,
                             BASE_DIR,
                             transforms=transforms,
                             train=False)
    test_loader = DataLoader(test_set,
                             batch_size=args.batch_size,
                             shuffle=True,
                             num_workers=2,
def main():
    args = parser.parse_args()
    with open(args.config) as f:
        config = yaml.load(f)
    for k, v in config['common'].items():
        setattr(args, k, v)
    
    test_transforms = transforms.Compose([
        d_utils.PointcloudToTensor()
    ])
    
    test_dataset = ShapeNetPart(root = args.data_root, num_points = args.num_points, split = 'test', normalize = True, transforms = test_transforms)
    test_dataloader = DataLoader(
        test_dataset, 
        batch_size=args.batch_size,
        shuffle=False, 
        num_workers=int(args.workers), 
        pin_memory=True
    )
    
    model = RSCNN_MSN(num_classes = args.num_classes, input_channels = args.input_channels, relation_prior = args.relation_prior, use_xyz = True)
    model.cuda()

    if args.checkpoint is not '':
        model.load_state_dict(torch.load(args.checkpoint))
        print('Load model successfully: %s' % (args.checkpoint))

    # evaluate
    PointcloudScale = d_utils.PointcloudScale(scale_low=0.87, scale_high=1.15)   # initialize random scaling
    model.eval()
    global_Class_mIoU, global_Inst_mIoU = 0, 0
    seg_classes = test_dataset.seg_classes
    seg_label_to_cat = {}           # {0:Airplane, 1:Airplane, ...49:Table}
    for cat in seg_classes.keys():
        for label in seg_classes[cat]:
            seg_label_to_cat[label] = cat
    
    for i in range(NUM_REPEAT):
        shape_ious = {cat:[] for cat in seg_classes.keys()}
        for _, data in enumerate(test_dataloader, 0):
            points, target, cls = data
            points, target = Variable(points, volatile=True), Variable(target, volatile=True)
            points, target = points.cuda(), target.cuda()

            batch_one_hot_cls = np.zeros((len(cls), 16))   # 16 object classes
            for b in range(len(cls)):
                batch_one_hot_cls[b, int(cls[b])] = 1
            batch_one_hot_cls = torch.from_numpy(batch_one_hot_cls)
            batch_one_hot_cls = Variable(batch_one_hot_cls.float().cuda())

            pred = 0
            new_points = Variable(torch.zeros(points.size()[0], points.size()[1], points.size()[2]).cuda(), volatile=True)
            for v in range(NUM_VOTE):
                if v > 0:
                    new_points.data = PointcloudScale(points.data)
                pred += F.softmax(model(new_points, batch_one_hot_cls), dim = 2)
            pred /= NUM_VOTE
            
            pred = pred.data.cpu()
            target = target.data.cpu()
            pred_val = torch.zeros(len(cls), args.num_points).type(torch.LongTensor)
            # pred to the groundtruth classes (selected by seg_classes[cat])
            for b in range(len(cls)):
                cat = seg_label_to_cat[target[b, 0]]
                logits = pred[b, :, :]   # (num_points, num_classes)
                pred_val[b, :] = logits[:, seg_classes[cat]].max(1)[1] + seg_classes[cat][0]
            
            for b in range(len(cls)):
                segp = pred_val[b, :]
                segl = target[b, :]
                cat = seg_label_to_cat[segl[0]]
                part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
                for l in seg_classes[cat]:
                    if torch.sum((segl == l) | (segp == l)) == 0:
                        # part is not present in this shape
                        part_ious[l - seg_classes[cat][0]] = 1.0
                    else:
                        part_ious[l - seg_classes[cat][0]] = torch.sum((segl == l) & (segp == l)) / float(torch.sum((segl == l) | (segp == l)))
                shape_ious[cat].append(np.mean(part_ious))
        
        instance_ious = []
        for cat in shape_ious.keys():
            for iou in shape_ious[cat]:
                instance_ious.append(iou)
            shape_ious[cat] = np.mean(shape_ious[cat])
        mean_class_ious = np.mean(list(shape_ious.values()))
        
        print('\n------ Repeat %3d ------' % (i + 1))
        for cat in sorted(shape_ious.keys()):
            print('%s: %0.6f'%(cat, shape_ious[cat]))
        print('Class_mIoU: %0.6f' % (mean_class_ious))
        print('Instance_mIoU: %0.6f' % (np.mean(instance_ious)))

        if mean_class_ious > global_Class_mIoU:
            global_Class_mIoU = mean_class_ious
            global_Inst_mIoU = np.mean(instance_ious)
                
    print('\nBest voting Class_mIoU = %0.6f, Instance_mIoU = %0.6f' % (global_Class_mIoU, global_Inst_mIoU))
def main():
    args = parser.parse_args()
    with open(args.config) as f:
        config = yaml.load(f)
    for k, v in config['common'].items():
        setattr(args, k, v)

    test_transforms = transforms.Compose([d_utils.PointcloudToTensor()])

    test_dataset = ModelNet40Cls(num_points=args.num_points,
                                 root=args.data_root,
                                 transforms=test_transforms,
                                 train=False)
    test_dataloader = DataLoader(test_dataset,
                                 batch_size=args.batch_size,
                                 shuffle=False,
                                 num_workers=int(args.workers),
                                 pin_memory=False)

    model = RSCNN_SSN(num_classes=args.num_classes,
                      input_channels=args.input_channels,
                      relation_prior=args.relation_prior,
                      use_xyz=True)
    # for multi GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
        model = nn.DataParallel(model, device_ids=[0, 1])
        model.to(device)
    elif torch.cuda.is_available() and torch.cuda.device_count() == 1:
        model.cuda()

    if args.checkpoint is not '':
        model.load_state_dict(torch.load(args.checkpoint))
        print('Load model successfully: %s' % (args.checkpoint))

    # evaluate
    PointcloudScale = d_utils.PointcloudScale()  # initialize random scaling
    model.eval()
    global_acc = 0
    for i in range(NUM_REPEAT):
        preds = []
        labels = []
        for j, data in enumerate(test_dataloader, 0):
            points, target = data
            points, target = points.cuda(), target.cuda()
            points, target = Variable(points,
                                      volatile=True), Variable(target,
                                                               volatile=True)

            # fastest point sampling
            fps_idx = pointnet2_utils.furthest_point_sample(
                points, 1200)  # (B, npoint)
            pred = 0
            for v in range(NUM_VOTE):
                new_fps_idx = fps_idx[:,
                                      np.random.choice(1200, args.
                                                       num_points, False)]
                new_points = pointnet2_utils.gather_operation(
                    points.transpose(1, 2).contiguous(),
                    new_fps_idx).transpose(1, 2).contiguous()
                if v > 0:
                    new_points.data = PointcloudScale(new_points.data)
                pred += F.softmax(model(new_points), dim=1)
            pred /= NUM_VOTE
            target = target.view(-1)
            _, pred_choice = torch.max(pred.data, -1)

            preds.append(pred_choice)
            labels.append(target.data)

        preds = torch.cat(preds, 0)
        labels = torch.cat(labels, 0)
        acc = (preds == labels).sum() / labels.numel()
        if acc > global_acc:
            global_acc = acc
        print('Repeat %3d \t Acc: %0.6f' % (i + 1, acc))
    print('\nBest voting acc: %0.6f' % (global_acc))