datadir_unaligned = join(datadir, 'unaligned', 'unaligned_train400')

    # train_dataset = datasets.CEILDataset(datadir_syn, read_fns('VOC2012_224_train_png.txt'), size=opt.max_dataset_size)
    # train_dataset_real = datasets.CEILTestDataset(datadir_real, enable_transforms=True)
    train_dataset_unaligned = datasets.CEILTestDataset(datadir_unaligned, enable_transforms=True, flag={'unaligned':True}, size=None)
    # train_dataset_fusion = datasets.FusionDataset([train_dataset, train_dataset_unaligned, train_dataset_real], [0.25,0.5,0.25])

    train_dataloader_fusion = datasets.DataLoader(
        train_dataset_unaligned, batch_size=opt.batchSize, shuffle=not opt.serial_batches,  # train_dataset_fusion
        num_workers=opt.nThreads, pin_memory=True)

    eval_dataset_ceilnet = datasets.CEILTestDataset(join(datadir, 'testdata_CEILNET_table2'))

    eval_dataset_real = datasets.CEILTestDataset(
        join(datadir, 'real20'),
        fns=read_fns('real_test.txt'))

    eval_dataloader_ceilnet = datasets.DataLoader(
        eval_dataset_ceilnet, batch_size=1, shuffle=False,
        num_workers=opt.nThreads, pin_memory=True)

    eval_dataloader_real = datasets.DataLoader(
        eval_dataset_real, batch_size=1, shuffle=False,
        num_workers=opt.nThreads, pin_memory=True)

    # -------------------- engine start ---------------------------
    engine = Engine(opt)

    # ----------------------Main Loop for direct training---------------------------
    engine.model.opt.lambda_gan = 0
    # engine.model.opt.lambda_gan = 0.01
Пример #2
0
import data.reflect_dataset as datasets
import util.util as util
import data

opt = TrainOptions().parse()

cudnn.benchmark = True

# modify the following code to 
datadir = '/media/kaixuan/DATA/Papers/Code/Data/Reflection/'

datadir_syn = join(datadir, 'VOCdevkit/VOC2012/PNGImages')
datadir_real = join(datadir, 'real_train')
datadir_unaligned = join(datadir, 'unaligned', 'unaligned_train250')

train_dataset = datasets.CEILDataset(datadir_syn, read_fns('VOC2012_224_train_png.txt'), size=opt.max_dataset_size)
train_dataset_real = datasets.CEILTestDataset(datadir_real, enable_transforms=True)

train_dataset_unaligned = datasets.CEILTestDataset(datadir_unaligned, enable_transforms=True, flag={'unaligned':True}, size=None)

train_dataset_fusion = datasets.FusionDataset([train_dataset, train_dataset_unaligned, train_dataset_real], [0.25,0.5,0.25])


train_dataloader_fusion = datasets.DataLoader(
    train_dataset_fusion, batch_size=opt.batchSize, shuffle=not opt.serial_batches, 
    num_workers=opt.nThreads, pin_memory=True)


engine = Engine(opt)
"""Main Loop"""
def set_learning_rate(lr):
Пример #3
0
    opt.display_freq = 20
    opt.print_freq = 20
    opt.nEpochs = 40
    opt.max_dataset_size = 100
    opt.no_log = False
    opt.nThreads = 0
    opt.decay_iter = 0
    opt.serial_batches = True
    opt.serial_batches = True
    opt.serial_batches = True
    opt.no_flip = True

datadir_syn = '/content/gdrive/My Drive/Datasets/SIRR/voc_reshaped_224x224/'
datadir_real = '/content/gdrive/My Drive/Datasets/SIRR/real_dataset_CEILNet_Berkley/real/'
train_dataset = datasets.CEILDataset(datadir_syn,
                                     read_fns('VOC17k_train.txt'),
                                     size=opt.max_dataset_size,
                                     enable_transforms=True,
                                     low_sigma=opt.low_sigma,
                                     high_sigma=opt.high_sigma,
                                     low_gamma=opt.low_gamma,
                                     high_gamma=opt.high_gamma)

train_dataset_real = datasets.CEILTestDataset(datadir_real,
                                              fns=read_fns('real_train.txt'),
                                              enable_transforms=True)

# train_dataset_fusion = datasets.FusionDataset([train_dataset, train_dataset_real], [0.7, 0.3])
train_dataset_fusion = train_dataset
train_dataloader_fusion = datasets.DataLoader(train_dataset_fusion,
                                              batch_size=opt.batchSize,
Пример #4
0
    opt.max_dataset_size = 100
    opt.no_log = False
    opt.nThreads = 0
    opt.decay_iter = 0
    opt.serial_batches = True
    opt.no_flip = True

# modify the following code to
datadir = '/home/centos/reflection_removal/train_dataset/'
#'/media/kaixuan/DATA/Papers/Code/Data/Reflection/'

datadir_syn = join(datadir, 'VOCdevkit/VOC2012/PNGImages')
datadir_real = join(datadir, 'real_train')

train_dataset = datasets.CEILDataset(datadir_syn,
                                     read_fns('VOC2012_224_train_png.txt'),
                                     size=opt.max_dataset_size,
                                     enable_transforms=True,
                                     low_sigma=opt.low_sigma,
                                     high_sigma=opt.high_sigma,
                                     low_gamma=opt.low_gamma,
                                     high_gamma=opt.high_gamma)

train_dataset_real = datasets.CEILTestDataset(datadir_real,
                                              enable_transforms=True)

train_dataset_fusion = datasets.FusionDataset(
    [train_dataset, train_dataset_real], [0.7, 0.3])

train_dataloader_fusion = datasets.DataLoader(train_dataset_fusion,
                                              batch_size=opt.batchSize,
Пример #5
0
    opt.nEpochs = 40
    opt.max_dataset_size = 100
    opt.no_log = False
    opt.nThreads = 0
    opt.decay_iter = 0
    opt.serial_batches = True
    opt.no_flip = True

# modify the following code to 
datadir = '/media/kaixuan/DATA/Papers/Code/Data/Reflection/'

datadir_syn = join(datadir, 'VOCdevkit/VOC2012/PNGImages')
datadir_real = join(datadir, 'real_train')

train_dataset = datasets.CEILDataset(
    datadir_syn, read_fns('VOC2012_224_train_png.txt'), size=opt.max_dataset_size, enable_transforms=True, 
    low_sigma=opt.low_sigma, high_sigma=opt.high_sigma,
    low_gamma=opt.low_gamma, high_gamma=opt.high_gamma)

train_dataset_real = datasets.CEILTestDataset(datadir_real, enable_transforms=True)

train_dataset_fusion = datasets.FusionDataset([train_dataset, train_dataset_real], [0.7, 0.3])

train_dataloader_fusion = datasets.DataLoader(
    train_dataset_fusion, batch_size=opt.batchSize, shuffle=not opt.serial_batches, 
    num_workers=opt.nThreads, pin_memory=True)

eval_dataset_ceilnet = datasets.CEILTestDataset(join(datadir, 'testdata_CEILNET_table2'))

eval_dataset_real = datasets.CEILTestDataset(
    join(datadir, 'real20'),