Пример #1
0
def test(model_path):
    test_args = TestOptions().parse()
    test_args.thread = 0
    test_args.batchsize = 1
    merge_cfg_from_file(test_args)

    data_loader = CustomerDataLoader(test_args)
    test_datasize = len(data_loader)
    logger.info('{:>15}: {:<30}'.format('test_data_size', test_datasize))
    # load model
    model = MetricDepthModel()

    model.eval()

    test_args.load_ckpt = model_path

    # load checkpoint
    if test_args.load_ckpt:
        load_ckpt(test_args, model)
    model.cuda()
    # model = torch.nn.DataParallel(model)

    # test
    smoothed_absRel = SmoothedValue(test_datasize)
    smoothed_rms = SmoothedValue(test_datasize)
    smoothed_logRms = SmoothedValue(test_datasize)
    smoothed_squaRel = SmoothedValue(test_datasize)
    smoothed_silog = SmoothedValue(test_datasize)
    smoothed_silog2 = SmoothedValue(test_datasize)
    smoothed_log10 = SmoothedValue(test_datasize)
    smoothed_delta1 = SmoothedValue(test_datasize)
    smoothed_delta2 = SmoothedValue(test_datasize)
    smoothed_delta3 = SmoothedValue(test_datasize)
    smoothed_whdr = SmoothedValue(test_datasize)

    smoothed_criteria = {
        'err_absRel': smoothed_absRel,
        'err_squaRel': smoothed_squaRel,
        'err_rms': smoothed_rms,
        'err_silog': smoothed_silog,
        'err_logRms': smoothed_logRms,
        'err_silog2': smoothed_silog2,
        'err_delta1': smoothed_delta1,
        'err_delta2': smoothed_delta2,
        'err_delta3': smoothed_delta3,
        'err_log10': smoothed_log10,
        'err_whdr': smoothed_whdr
    }

    for i, data in enumerate(data_loader):
        out = model.inference(data)
        pred_depth = torch.squeeze(out['b_fake'])
        img_path = data['A_paths']
        invalid_side = data['invalid_side'][0]
        pred_depth = pred_depth[invalid_side[0]:pred_depth.size(0) -
                                invalid_side[1], :]
        pred_depth = pred_depth / data['ratio'].cuda()  # scale the depth
        pred_depth = resize_image(pred_depth,
                                  torch.squeeze(data['B_raw']).shape)
        smoothed_criteria = evaluate_err(pred_depth,
                                         data['B_raw'],
                                         smoothed_criteria,
                                         mask=(45, 471, 41, 601),
                                         scale=10.)

        # save images
        model_name = test_args.load_ckpt.split('/')[-1].split('.')[0]
        image_dir = os.path.join(cfg.ROOT_DIR, './evaluation',
                                 cfg.MODEL.ENCODER, model_name)
        if not os.path.exists(image_dir):
            os.makedirs(image_dir)
        img_name = img_path[0].split('/')[-1]
        #plt.imsave(os.path.join(image_dir, 'd_' + img_name), pred_depth, cmap='rainbow')
        #cv2.imwrite(os.path.join(image_dir, 'rgb_' + img_name), data['A_raw'].numpy().squeeze())

        # print('processing (%04d)-th image... %s' % (i, img_path))

    # print("###############absREL ERROR: %f", smoothed_criteria['err_absRel'].GetGlobalAverageValue())
    # print("###############silog ERROR: %f", np.sqrt(smoothed_criteria['err_silog2'].GetGlobalAverageValue() - (
    #     smoothed_criteria['err_silog'].GetGlobalAverageValue()) ** 2))
    # print("###############log10 ERROR: %f", smoothed_criteria['err_log10'].GetGlobalAverageValue())
    # print("###############RMS ERROR: %f", np.sqrt(smoothed_criteria['err_rms'].GetGlobalAverageValue()))
    # print("###############delta_1 ERROR: %f", smoothed_criteria['err_delta1'].GetGlobalAverageValue())
    # print("###############delta_2 ERROR: %f", smoothed_criteria['err_delta2'].GetGlobalAverageValue())
    # print("###############delta_3 ERROR: %f", smoothed_criteria['err_delta3'].GetGlobalAverageValue())
    # print("###############squaRel ERROR: %f", smoothed_criteria['err_squaRel'].GetGlobalAverageValue())
    # print("###############logRms ERROR: %f", np.sqrt(smoothed_criteria['err_logRms'].GetGlobalAverageValue()))

    f.write("tested model:" + model_path)
    f.write('\n')
    f.write("###############absREL ERROR:" +
            str(smoothed_criteria['err_absRel'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############silog ERROR:" + str(
        np.sqrt(smoothed_criteria['err_silog2'].GetGlobalAverageValue() -
                (smoothed_criteria['err_silog'].GetGlobalAverageValue())**2)))
    f.write('\n')
    f.write("###############log10 ERROR:" +
            str(smoothed_criteria['err_log10'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############RMS ERROR:" +
            str(np.sqrt(smoothed_criteria['err_rms'].GetGlobalAverageValue())))
    f.write('\n')
    f.write("###############delta_1 ERROR:" +
            str(smoothed_criteria['err_delta1'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############delta_2 ERROR:" +
            str(smoothed_criteria['err_delta2'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############delta_3 ERROR:" +
            str(smoothed_criteria['err_delta3'].GetGlobalAverageValue()))
    f.write('\n')
    f.write("###############squaRel ERROR:" +
            str(smoothed_criteria['err_squaRel'].GetGlobalAverageValue()))
    f.write('\n')
    f.write(
        "###############logRms ERROR:" +
        str(np.sqrt(smoothed_criteria['err_logRms'].GetGlobalAverageValue())))
    f.write('\n')
    f.write(
        '-----------------------------------------------------------------------------'
    )
    f.write('\n')
Пример #2
0
    }
    bg_val_metrics = {
        'abs_rel':
        bg_smoothed_criteria['err_absRel'].GetGlobalAverageValue(),
        'silog':
        np.sqrt(bg_smoothed_criteria['err_silog2'].GetGlobalAverageValue() -
                (bg_smoothed_criteria['err_silog'].GetGlobalAverageValue())**2)
    }
    print("global: ", val_metrics)
    print("roi: ", rois_val_metrics)
    print("bg: ", bg_val_metrics)
    return val_metrics


if __name__ == '__main__':
    train_dataloader = CustomerDataLoader(train_args)
    train_datasize = len(train_dataloader)
    gpu_num = torch.cuda.device_count()
    merge_cfg_from_file(train_datasize, gpu_num)

    val_dataloader = CustomerDataLoader(val_args)
    val_datasize = len(val_dataloader)

    # tensorboard logger
    if train_args.use_tfboard:
        from tensorboardX import SummaryWriter
        tblogger = SummaryWriter(cfg.TRAIN.LOG_DIR)

    # training status for logging
    training_stats = TrainingStats(
        train_args, cfg.TRAIN.LOG_INTERVAL,
Пример #3
0
from data.load_dataset import CustomerDataLoader
from lib.models.image_transfer import resize_image
from lib.utils.evaluate_depth_error import evaluate_err
from lib.models.metric_depth_model import MetricDepthModel
from lib.utils.logging import setup_logging, SmoothedValue
import matplotlib.pyplot as plt

logger = setup_logging(__name__)

if __name__ == '__main__':
    test_args = TestOptions().parse()
    test_args.thread = 1
    test_args.batchsize = 1
    merge_cfg_from_file(test_args)

    data_loader = CustomerDataLoader(test_args)
    test_datasize = len(data_loader)
    logger.info('{:>15}: {:<30}'.format('test_data_size', test_datasize))
    # load model
    model = MetricDepthModel()

    model.eval()

    # load checkpoint
    if test_args.load_ckpt:
        load_ckpt(test_args, model)
    model.cuda()
    model = torch.nn.DataParallel(model)

    # test
    smoothed_absRel = SmoothedValue(test_datasize)
Пример #4
0
def main():
    test_args = TestOptions().parse()
    test_args.thread = 1  # test code only supports thread = 1
    test_args.batchsize = 1  # test code only supports batchSize = 1

    data_loader = CustomerDataLoader(test_args)
    test_datasize = len(data_loader)
    logger.info('{:>15}: {:<30}'.format('test_data_size', test_datasize))
    # load model
    model = DepthNormal()
    # evaluate mode
    model.eval()

    # load checkpoint
    if test_args.load_ckpt:
        load_ckpt(test_args, model)
    model.cuda()
    model = torch.nn.DataParallel(model)

    for i, data in enumerate(data_loader):
        out = model.module.inference(data)
        pred_depth = np.squeeze(out['b_fake']) * 80.  # [h, w]
        pred_conf = np.squeeze(out['b_fake_conf'])  # [c, h, w]

        # the image size has been padded to the size (385, 1243)
        pred_depth_crop = pred_depth[data['pad_raw'][0][0]:,
                                     data['pad_raw'][0][2]:]
        pred_conf_crop = pred_conf[:, data['pad_raw'][0][0]:,
                                   data['pad_raw'][0][2]:]

        sample_th = 0.15
        sample_mask = get_sample_mask(pred_conf_crop.cpu().numpy(),
                                      threshold=sample_th)  # [h, w]

        #######################################################################################
        # add by users
        img_name = data['A_paths'][0].split('/')[-1][:-4]
        calib_name = img_name + '.txt'
        calib_dir = os.path.join(calib_fold, calib_name)
        camera_para = np.genfromtxt(calib_dir,
                                    delimiter=' ',
                                    skip_footer=3,
                                    dtype=None)
        P3_0 = camera_para[3]
        P2_0 = camera_para[2]
        P3_2 = P3_0
        P3_2[4] -= P2_0[4]
        R0_rect = np.genfromtxt(calib_dir,
                                delimiter=' ',
                                skip_header=4,
                                skip_footer=2)
        Tr_velo_to_cam0 = np.genfromtxt(calib_dir,
                                        delimiter=' ',
                                        skip_header=5,
                                        skip_footer=1)

        pcd_cam2 = reconstruct_3D(pred_depth_crop.cpu().numpy(), P3_2[3],
                                  P3_2[7], P3_2[1], P3_2[6])
        # Transfer points in cam2 coordinate to cam0 coordinate
        pcd_cam0 = pcd_cam2 - np.array([[[P2_0[4] / P2_0[1]]],
                                        [[P2_0[8] / P2_0[1]]],
                                        [[P2_0[12] / P2_0[1]]]])

        # Transfer points in cam0 coordinate to velo coordinate
        pcd_velo = transfer_points_in_cam0_to_velo(pcd_cam0, R0_rect,
                                                   Tr_velo_to_cam0)

        rgb = data['A_raw'][0].cpu().numpy()

        save_ply(pcd_velo,
                 rgb,
                 os.path.join(pcd_folder, img_name) + '_sample.ply',
                 sample_mask=sample_mask)
        #save_ply(pcd_cam2, rgb, os.path.join(pcd_folder, img_name) + '.ply')
        print('saved', img_name)