Пример #1
0
def load_train_data():
    util.download_and_extract(
        "./dataset/MNIST", "http://deeplearning.net/data/mnist/mnist.pkl.gz")
    train, valid, test = util.unpickle("./dataset/MNIST/mnist.pkl")
    X_train = np.concatenate([train[0], valid[0]]).reshape([-1, 28, 28])
    Y_train = np.concatenate([train[1], valid[1]]).T
    return X_train, Y_train, util.class_encoding(Y_train)
Пример #2
0
def load_test_data():
    util.download_and_extract(
        "./dataset/MNIST", "http://deeplearning.net/data/mnist/mnist.pkl.gz")
    train, valid, test = util.unpickle("./dataset/MNIST/mnist.pkl")
    X_test = test[0].reshape([-1, 28, 28])
    Y_test = test[1].T
    return X_test, Y_test, util.class_encoding(Y_test)
Пример #3
0
def load_test_data():
    util.download_and_extract(
        "./dataset/CIFAR-10",
        "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz")
    data_dict = util.unpickle(
        "./dataset/CIFAR-10/cifar-10-batches-py/test_batch")
    X_test = (np.array(data_dict[b'data'], dtype=float) / 255.0).reshape(
        [-1, 3, 32, 32]).transpose([0, 2, 3, 1])
    Y_test = np.array(data_dict[b'labels'], dtype=int)
    return X_test, Y_test, util.class_encoding(Y_test)
Пример #4
0
def load_train_data():
    util.kaggle_and_extract("./dataset/FRUITS", "moltean/fruits")
    keys = [
        str(x) for x in sorted(
            Path('./dataset/FRUITS/fruits-360/Training').glob('*'))
    ]
    X_train = np.asarray(
        sorted(Path('./dataset/FRUITS/fruits-360/Training').glob("**/*.jpg")))
    Y_train = np.asarray(
        [keys.index('/'.join(str(x).split('/')[:-1])) for x in X_train])
    return X_train, Y_train, util.class_encoding(Y_train)
Пример #5
0
def load_train_data():
    util.download_and_extract(
        "./dataset/CIFAR-10",
        "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz")
    X_train = np.zeros(shape=[50000, 32, 32, 3], dtype=float)
    Y_train = np.zeros(shape=[50000], dtype=int)
    begin = 0
    for i in range(1, 6):
        data_dict = util.unpickle(
            "./dataset/CIFAR-10/cifar-10-batches-py/data_batch_{}".format(i))
        x_raw = (np.array(data_dict[b'data'], dtype=float) / 255.0).reshape(
            [-1, 3, 32, 32]).transpose([0, 2, 3, 1])
        y_raw = np.array(data_dict[b'labels'], dtype=int)
        num = len(x_raw)
        end = begin + num
        X_train[begin:end, :] = x_raw
        Y_train[begin:end] = y_raw
        begin = end
    return X_train, Y_train, util.class_encoding(Y_train)
Пример #6
0
def load_test_data():
    util.kaggle_and_extract("./dataset/IRIS", "uciml/iris")
    raw = list(csv.reader(open('./dataset/IRIS/Iris.csv', 'r')))[1:]
    X_test = np.asarray([np.asarray([x for x in r[:-1]]) for r in raw])
    Y_test = np.asarray([np.asarray(get_key(r[-1])) for r in raw])
    return X_test, Y_test, util.class_encoding(Y_test)