Пример #1
0
        def graph_min_max_versus(result_name):
            name = 'min-max-{}-versus-{}'.format(adaptive.name, result_name)

            yextractor = lambda x: scalar_extractor(x.get((0, 0), None)) if result_name == 'attacker distance' else scalar_extractor(x)

            g = min_max_versus.Grapher(
                self.algorithm_module.graphs_path, name,
                xaxis='network size', yaxis=result_name, vary='approach', yextractor=yextractor)

            g.xaxis_label = 'Network Size'
            g.yaxis_label = graph_parameters[result_name][0]
            g.key_position = graph_parameters[result_name][1]

            g.yaxis_font = g.xaxis_font = "',15'"

            g.nokey = True
            #g.key_font = "',20'"
            #g.key_spacing = "2"
            #g.key_width = "+6"

            g.point_size = '2'
            g.line_width = 4

            g.min_label = 'Dynamic - Lowest'
            g.max_label = 'Dynamic - Highest'
            g.comparison_label = 'DynamicSpr'
            g.vary_label = ''

            if result_name in custom_yaxis_range_max:
                g.yaxis_range_max = custom_yaxis_range_max[result_name]

            def vvalue_converter(name):
                return {
                    "PB_FIXED1_APPROACH": "Fixed1",
                    "PB_FIXED2_APPROACH": "Fixed2",
                    "PB_RND_APPROACH": "Rnd",
                }[name]
            g.vvalue_label_converter = vvalue_converter

            g.generate_legend_graph = True

            if result_name in protectionless_results.result_names:
                g.create(adaptive_spr_results, our_results, baseline_results=protectionless_results)
            else:
                g.create(adaptive_spr_results, our_results)

            summary.GraphSummary(
                os.path.join(self.algorithm_module.graphs_path, name),
                '{}-{}'.format(self.algorithm_module.name, name).replace(" ", "_")
            ).run()
Пример #2
0
 def yextractor(yvalue):
     print(yvalue)
     return scalar_extractor(yvalue, key=(0, 0))
Пример #3
0
    def _run_graph_testbed(self, args):
        graph_parameters = {
            'normal latency': ('Normal Message Latency (ms)', 'left top'),
            #'ssd': ('Sink-Source Distance (hops)', 'left top'),
            'captured': ('Capture Ratio (%)', 'left top'),
            #'fake': ('Fake Messages Sent', 'left top'),
            #'sent': ('Total Messages Sent', 'left top'),
            'received ratio': ('Receive Ratio (%)', 'left bottom'),
            #'tfs': ('Number of TFS Created', 'left top'),
            #'pfs': ('Number of PFS Created', 'left top'),
            #'tailfs': ('Number of TailFS Created', 'left top'),
            'attacker distance':
            ('Attacker-Source Distance (Meters)', 'left top'),
            'norm(norm(sent,time taken),network size)':
            ('Messages Sent per Second per Node', 'left top'),
            'norm(norm(fake,time taken),network size)':
            ('Fake Messages Sent per Second per node', 'left top'),
            'average power consumption': ('Average Power Consumption (mA)',
                                          'left top'),
            'average power used': ('Average Energy Consumed (mAh)',
                                   'left top'),
            'norm(average power used,time taken)':
            ('Normalised Average Power Used (mAh)', 'left top'),
            'time taken': ('Time Taken (sec)', 'left top'),
        }

        varying = [
            #(('network size', ''), ('source period', ' seconds')),
            (('source period', ' seconds'), ('approach', '~')),
        ]

        custom_yaxis_range_max = {
            'received ratio': 100,
            'captured': 20,
            'norm(norm(sent,time taken),network size)': 6,
            'norm(norm(fake,time taken),network size)': 6,
            'average power used': 0.035,
            'average power consumption': 20,
        }

        def vvalue_converter(name):
            try:
                return {
                    "PB_FIXED1_APPROACH": "Fixed1",
                    "PB_FIXED2_APPROACH": "Fixed2",
                    "PB_RND_APPROACH": "Rnd",
                }[name]
            except KeyError:
                return name

        yextractors = {
            "attacker distance":
            lambda vvalue: scalar_extractor(vvalue, key=(1, 0))
        }

        def filter_params(all_params):
            return all_params['source period'] == '0.5'

        self._create_baseline_versus_graph(
            "real",
            protectionless,
            graph_parameters,
            varying,
            custom_yaxis_range_max=custom_yaxis_range_max,
            testbed=args.testbed,
            vvalue_label_converter=vvalue_converter,
            yextractor=yextractors,
            generate_legend_graph=True,
            xaxis_font="',16'",
            yaxis_font="',16'",
            xlabel_font="',14'",
            ylabel_font="',14'",
            line_width=3,
            point_size=1,
            nokey=True,
            legend_divisor=2,
            legend_font_size='14',
            legend_base_height=0.5,
            vary_label="",
            baseline_label="Protectionless",
            results_filter=filter_params,
        )
Пример #4
0
    def _run_graph_testbed(self, args):
        graph_parameters = {
            'normal latency': ('Normal Message Latency (ms)', 'left top'),
            #'ssd': ('Sink-Source Distance (hops)', 'left top'),
            'captured': ('Capture Ratio (%)', 'left top'),
            #'fake': ('Fake Messages Sent', 'left top'),
            #'sent': ('Total Messages Sent', 'left top'),
            'received ratio': ('Receive Ratio (%)', 'left bottom'),
            #'tfs': ('Number of TFS Created', 'left top'),
            #'pfs': ('Number of PFS Created', 'left top'),
            #'tailfs': ('Number of TailFS Created', 'left top'),
            'attacker distance':
            ('Attacker-Source Distance (Meters)', 'left top'),
            #"attacker distance percentage": ('Normalised Attacker Distance (%)', 'left top'),
            'norm(norm(sent,time taken),network size)':
            ('Messages Sent per Second per Node', 'left top'),
            'norm(norm(fake,time taken),network size)':
            ('Fake Messages Sent per Second per node', 'left top'),
            'average power consumption':
            ('Average Current Draw (mA)', 'left top'),
            'average power used': ('Average Energy Consumed (mAh)',
                                   'left top'),
            'time taken': ('Time Taken (sec)', 'left top'),
            'average duty cycle': ('Average Duty Cycle (%)', 'right top'),
        }

        lpl_params = self.algorithm_module.extra_parameter_names

        varying = [
            #(('network size', ''), ('source period', ' seconds')),
            #(('source period', ' seconds'), ('approach', '~')),
            (('source period', ' seconds'), (lpl_params, '~')),
        ]

        custom_yaxis_range_max = {
            'received ratio': 100,
            'captured': 30,
            'norm(norm(sent,time taken),network size)': 4,
            'norm(norm(fake,time taken),network size)': 4,
            'average power consumption': 20,
            'average power used': 0.04,
            'normal latency': 300,
            'attacker distance': 600,
            'average duty cycle': 100,
        }

        def vvalue_converter(name):
            try:
                return {
                    "PB_FIXED1_APPROACH": "Fixed1",
                    "PB_FIXED2_APPROACH": "Fixed2",
                }[name]
            except KeyError:
                return name

        yextractors = {
            "attacker distance":
            lambda vvalue: scalar_extractor(vvalue)[(1, 0)]
        }

        def fetch_baseline_result(baseline_results, data_key, src_period,
                                  baseline_params):

            if data_key[-1] != 'enabled':
                raise RuntimeError(f"Expected 'enabled', got {data_key[-1]}")

            # adaptive_spr_notify doesn't run with lpl enabled, but that is what we want to compare against
            data_key = data_key[:-1] + ('disabled', )

            return baseline_results.data[data_key][src_period][baseline_params]

        def filter_params(all_params):
            return all_params['source period'] == '0.5'

        self._create_baseline_versus_graph(
            "real",
            adaptive_spr_notify,
            graph_parameters,
            varying,
            custom_yaxis_range_max=custom_yaxis_range_max,
            testbed=args.testbed,
            vvalue_label_converter=vvalue_converter,
            yextractor=yextractors,
            generate_legend_graph=True,
            xaxis_font="',16'",
            yaxis_font="',16'",
            xlabel_font="',14'",
            ylabel_font="',14'",
            line_width=3,
            point_size=1,
            nokey=True,
            legend_divisor=3,
            legend_font_size='14',
            legend_base_height=0.5,
            vary_label="",
            baseline_label="DynamicSPR (no duty cycle)",
            fetch_baseline_result=fetch_baseline_result,
            results_filter=filter_params,
        )
Пример #5
0
    def _run_graph_min_max(self, args):
        graph_parameters = {
            'normal latency': ('Normal Message Latency (ms)', 'left top'),
            #'ssd': ('Sink-Source Distance (hops)', 'left top'),
            'captured': ('Capture Ratio (%)', 'left top'),
            #'fake': ('Fake Messages Sent', 'left top'),
            #'sent': ('Total Messages Sent', 'left top'),
            'received ratio': ('Receive Ratio (%)', 'left bottom'),
            #'tfs': ('Number of TFS Created', 'left top'),
            #'pfs': ('Number of PFS Created', 'left top'),
            #'tailfs': ('Number of TailFS Created', 'left top'),
            'attacker distance':
            ('Attacker-Source Distance (Meters)', 'left top'),
            #"attacker distance percentage": ('Normalised Attacker Distance (%)', 'left top'),
            'average duty cycle': ('Average Duty Cycle (%)', 'right top'),
            'norm(norm(sent,time taken),network size)':
            ('Messages Sent per Sec per Node', 'left top'),
            'norm(norm(fake,time taken),network size)':
            ('Fake Messages Sent per Sec per Node', 'left top'),
        }

        lpl_params = self.algorithm_module.extra_parameter_names

        varying = [
            #(('network size', ''), ('source period', ' seconds')),
            #(('network size', ''), (lpl_params, '~')),
            (('source period', ''), (lpl_params, '~')),
        ]

        custom_yaxis_range_max = {
            'captured': 25,
            'received ratio': 100,
            'average duty cycle': 100,
            'normal latency': 1000,
            'attacker distance': 70,
            'norm(norm(fake,time taken),network size)': 4,
            'norm(norm(sent,time taken),network size)': 5,
        }

        key_equivalence = {"low power listening": {"enabled": "disabled"}}

        #custom_yaxis_range_min = {
        #    'received ratio': 70,
        #}

        def vvalue_converter(name):
            try:
                return {
                    "PB_FIXED1_APPROACH": "Fixed1",
                    "PB_FIXED2_APPROACH": "Fixed2",
                }[name]
            except KeyError:
                return name

        yextractors = {
            # Just get the distance of attacker 0 from node 0 (the source in SourceCorner)
            "attacker distance":
            lambda yvalue: scalar_extractor(yvalue, key=(0, 0))
        }

        def fetch_baseline_result(baseline_results, data_key, src_period,
                                  baseline_params):

            if data_key[-1] != 'enabled':
                raise RuntimeError(f"Expected 'enabled', got {data_key[-1]}")

            # adaptive_spr_notify doesn't run with lpl enabled, but that is what we want to compare against
            data_key = data_key[:-1] + ('disabled', )

            return baseline_results.data[data_key][src_period][baseline_params]

            # These are the wakeups that need to be graphed

        valid_wakeups = [
            (200, 200, 250, 250, 75, 75),
            (80, 80, 120, 130, 5, 50),
            (40, 40, 120, 130, 5, 50),
            (35, 35, 100, 100, 5, 50),
            (35, 35, 60, 60, 5, 50),
        ]

        wakeup_names = ('lpl normal early', 'lpl normal late',
                        'lpl fake early', 'lpl fake late', 'lpl choose early',
                        'lpl choose late')

        def filter_params(all_params):
            try:
                wakeup = tuple(int(all_params[name]) for name in wakeup_names)
            except KeyError:
                wakeup = None

            return all_params['source period'] == '0.25' or all_params[
                'network size'] == '5' or (wakeup is not None
                                           and wakeup not in valid_wakeups)

        self._create_min_max_versus_graph(
            args.sim,
            [adaptive_spr_notify_tinyoslpl],
            adaptive_spr_notify,
            graph_parameters,
            varying,
            #testbed=args.testbed,
            vvalue_label_converter=vvalue_converter,
            results_filter=filter_params,
            custom_yaxis_range_max=custom_yaxis_range_max,
            #custom_yaxis_range_min=custom_yaxis_range_min,
            key_equivalence=key_equivalence,
            yextractor=yextractors,
            xaxis_font="',18'",
            yaxis_font="',18'",
            xlabel_font="',16'",
            ylabel_font="',15'",
            line_width=3,
            point_size=1,
            nokey=True,
            generate_legend_graph=True,
            legend_font_size=16,
            legend_divisor=4,
            legend_base_height=0.5,
            vary_label="",
            #baseline_label="DynamicSPR (no duty cycle)",
            max_label=['TinyOS LPL Max'],  #'DynamicSPR Max', 
            min_label=['TinyOS LPL Min'],  #'DynamicSPR Min', 
            min_max_same_label=["TinyOS LPL"],  #"DynamicSPR", 
            comparison_label="DC",
            baseline_label="DynamicSPR",

            #squash_path=True,
            fetch_baseline_result=fetch_baseline_result,
        )
Пример #6
0
    def _run_graph(self, args):
        graph_parameters = {
            'normal latency': ('Normal Message Latency (seconds)', 'left top'),
            #'ssd': ('Sink-Source Distance (hops)', 'left top'),
            'captured': ('Capture Ratio (%)', 'left top'),
            #'sent': ('Total Messages Sent', 'left top'),
            'received ratio': ('Receive Ratio (%)', 'left bottom'),
            'norm(sent,time taken)':
            ('Total Messages Sent per Second', 'left top'),
            'attacker distance':
            ('Attacker-Source Distance (Meters)', 'left top'),
            #"attacker distance percentage": ('Normalised Attacker Distance (%)', 'left top'),
            #'failed avoid sink': ('Failed to Avoid Sink (%)', 'left top'),
            #'failed avoid sink when captured': ('Failed to Avoid Sink When Captured (%)', 'left top'),
        }

        varying = [
            #(('network size', ''), ('msg group size', '')),
            (('pr direct to sink', ''), ('msg group size', '')),
            #(('network size', ''), ('source period', ' seconds')),
            #(('network size', ''), ('pr direct to sink', '')),
        ]

        custom_yaxis_range_max = {
            'received ratio': 100,
            'norm(sent,time taken)': 500,
            'captured': 25,
            'normal latency': 4000,
            'attacker distance': 80,
        }

        yextractors = {
            # Just get the distance of attacker 0 from node 0 (the source in SourceCorner)
            "attacker distance":
            lambda yvalue: scalar_extractor(yvalue, key=(0, 0)),
            "attacker distance percentage":
            lambda yvalue: scalar_extractor(yvalue, key=(0, 0)) * 100
        }

        kwargs = {
            "custom_yaxis_range_max": custom_yaxis_range_max,
            "yextractor": yextractors,
            "xaxis_font": "',16'",
            "yaxis_font": "',16'",
            "xlabel_font": "',14'",
            "ylabel_font": "',14'",
            "line_width": 3,
            "point_size": 1,
            "nokey": True,
            "generate_legend_graph": True,
            "legend_font_size": 16,
        }

        self._create_versus_graph(args.sim, graph_parameters, varying,
                                  **kwargs)

        varying = [
            (('network size', ''), ('msg group size', '')),
        ]

        kwargs["xvalues_to_tic_label"] = lambda x: f'{x}x{x}'

        self._create_versus_graph(args.sim, graph_parameters, varying,
                                  **kwargs)
Пример #7
0
    def _run_graph(self, args):
        graph_parameters = {
            'normal latency': ('Normal Message Latency (ms)', 'left top'),
            #'ssd': ('Sink-Source Distance (hops)', 'left top'),
            'captured': ('Capture Ratio (%)', 'left top'),
            'fake': ('Fake Messages Sent', 'left top'),
            'sent': ('Total Messages Sent', 'left top'),
            'received ratio': ('Receive Ratio (%)', 'left bottom'),
            #'tfs': ('Number of TFS Created', 'left top'),
            #'pfs': ('Number of PFS Created', 'left top'),
            'attacker distance':
            ('Attacker-Source Distance (Meters)', 'left top'),
            'norm(norm(sent,time taken),network size)':
            ('Messages Sent per Second per Node', 'left top'),
            'norm(norm(fake,time taken),network size)':
            ('Fake Messages Sent per Second per node', 'left top'),
        }

        varying = [
            #(('network size', ''), ('source period', ' seconds')),
            #(('network size', ''), ('communication model', '~')),
            (('network size', ''), ('approach', '')),
        ]

        custom_yaxis_range_max = {
            'received ratio': 100,
            'norm(norm(fake,time taken),network size)': 25,
            'norm(norm(sent,time taken),network size)': 25,
            'captured': 14,
            'normal latency': 120
        }

        yextractors = {
            # Just get the distance of attacker 0 from node 0 (the source in SourceCorner)
            "attacker distance":
            lambda yvalue: scalar_extractor(yvalue)[(0, 0)]
        }

        def vvalue_converter(name):
            try:
                return {
                    "PB_FIXED1_APPROACH": "Fixed1",
                    "PB_FIXED2_APPROACH": "Fixed2",
                    "PB_RND_APPROACH": "Rnd",
                    "PB_ATTACKER_EST_APPROACH": "AttackerEst",
                    "PB_SINK_APPROACH": "Sink",
                }[name]
            except KeyError:
                return name

        self._create_versus_graph(
            args.sim,
            graph_parameters,
            varying,
            custom_yaxis_range_max=custom_yaxis_range_max,
            vvalue_label_converter=vvalue_converter,
            yextractor=yextractors,
            xaxis_font="',16'",
            yaxis_font="',16'",
            xlabel_font="',14'",
            ylabel_font="',14'",
            line_width=3,
            point_size=1,
            nokey=True,
            generate_legend_graph=True,
            legend_font_size=16,
            xvalues_to_tic_label=lambda x: f'"{x}x{x}"')
Пример #8
0
    def _run_graph(self, args):
        graph_parameters = {
            'normal latency': ('Normal Message Latency (ms)', 'left top'),
            #'ssd': ('Sink-Source Distance (hops)', 'left top'),
            'captured': ('Capture Ratio (%)', 'left top'),
            #'sent': ('Total Messages Sent', 'left top'),
            'received ratio': ('Receive Ratio (%)', 'left bottom'),
            #'tfs': ('Number of TFS Created', 'left top'),
            #'pfs': ('Number of PFS Created', 'left top'),
            #'tailfs': ('Number of TailFS Created', 'left top'),
            'attacker distance':
            ('Attacker-Source Distance (Meters)', 'left top'),
            #"attacker distance percentage": ('Normalised Attacker Distance (%)', 'left top'),
            'average duty cycle': ('Average Duty Cycle (%)', 'right top'),
            'norm(sent,time taken)': ('Messages Sent per Second', 'left top'),
            'norm(norm(sent,time taken),num_nodes)':
            ('Messages Sent per Sec per Node', 'left top'),
        }

        lpl_params = self.algorithm_module.extra_parameter_names

        varying = [
            #(('network size', ''), ('source period', ' seconds')),
            #(('network size', ''), (lpl_params, '~')),
            (('source period', ''), (lpl_params, '~')),
        ]

        custom_yaxis_range_max = {
            'captured': 25,
            'received ratio': 100,
            'average duty cycle': 100,
            'normal latency': 3000,
            'attacker distance': 70,
            'norm(norm(sent,time taken),num_nodes)': 5,
        }

        #custom_yaxis_range_min = {
        #    'received ratio': 70,
        #}

        yextractors = {
            # Just get the distance of attacker 0 from node 0 (the source in SourceCorner)
            "attacker distance":
            lambda yvalue: scalar_extractor(yvalue, key=(0, 0))
        }

        def fetch_baseline_result(baseline_results, data_key, src_period,
                                  baseline_params):

            if data_key[-1] != 'enabled':
                raise RuntimeError(f"Expected 'enabled', got {data_key[-1]}")

            # adaptive_spr_notify doesn't run with lpl enabled, but that is what we want to compare against
            data_key = data_key[:-1] + ('disabled', )

            return baseline_results.data[data_key][src_period][baseline_params]

        def filter_params(all_params):
            return all_params['source period'] == '0.25'

        self._create_baseline_versus_graph(
            args.sim,
            phantom,
            graph_parameters,
            varying,
            results_filter=filter_params,
            custom_yaxis_range_max=custom_yaxis_range_max,
            #custom_yaxis_range_min=custom_yaxis_range_min,
            yextractor=yextractors,
            xaxis_font="',18'",
            yaxis_font="',18'",
            xlabel_font="',16'",
            ylabel_font="',15'",
            line_width=3,
            point_size=1,
            nokey=True,
            generate_legend_graph=True,
            legend_font_size=16,
            legend_divisor=4,
            legend_base_height=0.3,
            vary_label="",
            baseline_label="Phantom (no duty cycle)",
            fetch_baseline_result=fetch_baseline_result,
        )
Пример #9
0
 def yextractor(yvalue):
     print(yvalue)
     return scalar_extractor(yvalue)[(0, 0)]