Пример #1
0
    def __load_data(self):
        [
            self.trainData, self.trainDataSymbols, self.trainTargets,
            self.trainTargetsSymbols, self.trainTargetClasses, self.testData,
            self.testDataSymbols, self.testTargets, self.testTargetsSymbols,
            self.validationData, self.validationDataSymbols,
            self.validationTargets, self.validationTargetsSymbols,
            self.validationTargetClasses
        ] = data.loadDataSet()

        self._data_loaded = True
Пример #2
0
from framework.models import Sequential
from framework.activations import ReLU, Sigmoid
from framework.layers import Linear
from framework.losses import MSE
from framework.optimizers import SGD
from framework import FloatTensor as Tensor
import matplotlib.pyplot as plt
import utilites
from data import loadDataSet


if __name__ == "__main__":
    plt.ion()
    simple = False

    data = loadDataSet(one_hot=False)

    # Create simple linear calssifier model
    lin1 = Linear(2, 10)
    relu1 = ReLU()
    lin2 = Linear(10, 10)
    relu2 = ReLU()
    lin3 = Linear(10, 1)
    sig1 = Sigmoid()
    model = Sequential([lin1, relu1, lin2, relu2, lin3, sig1])

    # Training model
    epochs_per_step = 1
    for e in range(0, 100, epochs_per_step):
        # Testing model on training data
        pred_labels = model.predict(x=Tensor(data.test.data))

def getDontCare(size=1568):
    ret = []
    for i in range(size):
        ret.append(0.5)
    return ret


# Load Datasets
[
    trainData, trainDataSymbols, trainTargets, trainTargetsSymbols,
    trainTargetClasses, testData, testDataSymbols, testTargets,
    testTargetsSymbols, validationData, validationDataSymbols,
    validationTargets, validationTargetsSymbols, validationTargetClasses
] = data.loadDataSet()

trainDataCombined = []
trainTargetsCombined = []
testDataCombined = []
validationDataCombined = []
validationTargetsCombined = []

for index, item in enumerate(trainData):
    trainDataCombined.append(
        np.concatenate((item, trainDataSymbols[index]), axis=0))
for i in range(70):
    for index, item in enumerate(trainData):
        trainDataCombined.append(
            np.concatenate((getDontCare(), trainDataSymbols[index]), axis=0))
for index, item in enumerate(trainTargets):
Пример #4
0
    for i, indv in enumerate(parents):
        if random.random() > pc:
            while True:
                tmp = copy.deepcopy(indv)
                chromosome = exchange_chromosome(nodes, tmp.chromosome)
                if nodes.is_feasible(chromosome):
                    break
            offspring = Individual(i + 1, chromosome)
        else:
            offspring = Individual(i + 1, indv.chromosome)
        offsprings.append(offspring)
    return offsprings


if __name__ == '__main__':
    nodes = loadDataSet('data5.xml')
    chromosome1 = [{
        1: 1,
        2: 4,
        3: 7,
        4: 10,
        5: 6,
        6: 12,
        7: 5,
        8: 11
    }, {
        1: 2,
        2: 8,
        3: 3,
        4: 9
    }]
Пример #5
0
from framework.models import Sequential
from framework.activations import ReLU, Sigmoid
from framework.layers import Linear
from framework.losses import MSE
from framework.optimizers import Adam  # SGD
import utilites
from data import loadDataSet

if __name__ == "__main__":
    data = loadDataSet(one_hot=True)

    # Create simple linear calssifier model
    lin1 = Linear(2, 25, std=0.1)
    relu1 = ReLU()
    lin2 = Linear(25, 25, std=0.1)
    relu2 = ReLU()
    lin3 = Linear(25, 25, std=0.1)
    relu3 = ReLU()
    lin4 = Linear(25, 2, std=0.1)
    sig1 = Sigmoid()
    model = Sequential([lin1, relu1, lin2, relu2, lin3, relu3, lin4, sig1])

    loss = MSE()
    optimizer = Adam()

    # Training model
    model.train(x=data.train.data,
                y=data.train.labels,
                batch_size=8,
                optimizer=optimizer,
                loss=loss,