def lstm_with_static_feature_model_experiments(result_file): if ExperimentSetup.data_source == 'lu': data_set = read_data_lu() else: data_set = read_data_sun() static_feature = data_set.static_feature dynamic_feature = data_set.dynamic_feature labels = data_set.labels static_n_features = static_feature.shape[1] dynamic_n_features = dynamic_feature.shape[2] time_steps = dynamic_feature.shape[1] n_output = labels.shape[1] model = LSTMWithStaticFeature( static_n_features, dynamic_n_features, time_steps, ExperimentSetup.lstm_size, n_output, batch_size=ExperimentSetup.batch_size, optimizer=tf.train.AdamOptimizer(ExperimentSetup.learning_rate), epochs=ExperimentSetup.epochs, output_n_epochs=ExperimentSetup.output_n_epochs) return model_experiments(model, data_set, result_file)
def resnet_model_experiments(result_file): if ExperimentSetup.data_source == 'lu': data_set = read_data_lu() else: data_set = read_data_sun() static_feature = data_set.static_feature labels = data_set.labels static_n_features = static_feature.shape[1] n_output = labels.shape[1] model = ResNet(static_n_features, n_output, batch_size=ExperimentSetup.batch_size, optimizer=tf.train.AdamOptimizer( ExperimentSetup.learning_rate), epochs=ExperimentSetup.epochs, output_n_epochs=ExperimentSetup.output_n_epochs) return model_experiments(model, data_set, result_file)
def bidirectional_lstm_model_experiments(result_file): if ExperimentSetup.data_source == 'lu': data_set = read_data_lu() else: data_set = read_data_sun() dynamic_feature = data_set.dynamic_feature labels = data_set.labels num_features = dynamic_feature.shape[2] time_steps = dynamic_feature.shape[1] n_output = labels.shape[1] model = BidirectionalLSTMModel( num_features, time_steps, ExperimentSetup.lstm_size, n_output, batch_size=ExperimentSetup.batch_size, optimizer=tf.train.AdamOptimizer(ExperimentSetup.learning_rate), epochs=ExperimentSetup.epochs, output_n_epoch=ExperimentSetup.output_n_epochs) return model_experiments(model, data_set, result_file)