def prepro_signal(): print('Preprocessing signal') # Load data fpaths, texts, _ = data.read_meta(os.path.join(args.data_path, args.meta)) # Creates folders if not os.path.exists(os.path.join(args.data_path, args.mel_dir)): os.mkdir(os.path.join(args.data_path, args.mel_dir)) if not os.path.exists(os.path.join(args.data_path, args.mag_dir)): os.mkdir(os.path.join(args.data_path, args.mag_dir)) # Creates pool p = Pool(NUM_JOBS) total_files = len(fpaths) with tqdm(total=total_files) as pbar: for _ in tqdm(p.imap_unordered(f, list(zip(fpaths, texts)))): pbar.update()
def prepro(seed): """ Preprocess meta data and splits them for train and test set """ print('Preprocessing meta') meta = data.read_meta(os.path.join(args.data_path, args.meta)) # Creates folders if not os.path.exists(os.path.join(args.data_path, args.mel_dir)): os.mkdir(os.path.join(args.data_path, args.mel_dir)) # if not os.path.exists(os.path.join(args.data_path, args.mag_dir)): # os.mkdir(os.path.join(args.data_path, args.mag_dir)) # Creates pool p = Pool(NUM_JOBS) total_files = len(meta) fpaths = meta.fpath.values with tqdm(total=total_files) as pbar: for _ in tqdm(p.imap_unordered(f, fpaths)): pbar.update() print('Complete')
from tqdm import tqdm dataset_detect_path = "../dataset/test" label_path = "yolov5/runs/detect/exp11/labels" result_save_path = "submission/" if __name__ == '__main__': detect_files = os.listdir(dataset_detect_path) with open(os.path.join(result_save_path, "submission4.txt"), 'a') as f: f.write('image_id,PredictionString\n') for file in tqdm(detect_files): try: meta = read_meta(os.path.join(dataset_detect_path, file)) x_size = int(meta["(0028, 0010)"]) # Rows y_size = int(meta["(0028, 0011)"]) # Columns except Exception(e): print(e) file = file.replace(".dicom", "") result_list = [] if os.path.exists(os.path.join(label_path, file+".txt")): with open(os.path.join(label_path, file+".txt")) as ff: result_list = ff.readlines() result_list = [[float(y) for y in x.split(' ')] for x in result_list] result_list = [[x[0], x[1] - x[3] / 2, x[2] - x[4] / 2, x[1] + x[3] / 2, x[2] + x[4]/2, x[5]] for x in result_list] result_list = [[x[0], x[5], x[1] * x_size, x[2] * y_size, x[3] * x_size, x[4] * y_size] for x in result_list] result_lists_temp = [[int(y) for y in x] for x in result_list] for i in range(len(result_lists_temp)): result_lists_temp[i][1] = result_list[i][1]